Assessment of Capabilities of Extremely Low
Probability of Rupture (xXLPR) Software—GoldSim and
SIAM Version 1.0

Prepared for

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research

Prepared by

Osvaldo Pensado’
E. Lynn Tipton'
Sitakanta Mohanty'
Thomas Wilt'
Robert Brient'
Graham Chell?
George Adams'
Kaushik Das’
Debashis Basu'

'Center for Nuclear Waste Regulatory Analyses
San Antonio, Texas

25outhwest Research Institute®
San Antonio, Texas

May 2011

ABSTRACT

The U.S. Nuclear Regulation Commission (NRC), Office of Nuclear Regulatory Research has
entered into a cooperative program with the Electric Power Research Institute (EPRI) with the
goal to develop a modular-based, probabilistic fracture mechanics tool or code capable of
determining the probability of failure for reactor coolant system components. This code is
referred to as extremely low probability of rupture (xXLPR). The intention of the code is to
encompass a range of physical processes, to be flexible to permit analysis of a variety of
service conditions, and to be adaptable to accommodate evolving and improving knowledge. A
pilot study was sponsored by the NRC and EPRI as a proof of concept to test (i) the feasibility of
developing probabilistic models for failure mechanisms for a component of the piping coolant
system, (ii) configuration management and quality assurance for multiple-party code
development, and (iii) existing tools for the prompt deployment of probabilistic models (NRC and
EPRI, 2011). The problem of initiation and growth of primary water stress corrosion cracks in a
dissimilar metal pressurizer surge nozzle weld of the piping coolant system in a nuclear power
plant was selected as the subject of the pilot study. To test existing tools for quick deployment
of probabilistic models, the commercial GoldSim® (GoldSim Technology Group LLC, 2011)
software and open source tools (SIAM-PFM) were identified to support a modular development
of the XLPR code. In this report, the Center for Nuclear Waste Regulatory Analyses (CNWRA®)
provides an independent assessment of the GoldSim and SIAM frames to support development
of the xLPR code. The evaluation focused on (i) ease of use from a user perspective,

(i) readability from a model developer perspective, (iii) flexibility and adaptability from a model
developer perspective, and (iv) potential of the frame for expansion of xXLPR. Two of the
appendices report also address several other aspects related to the framework development,
including elements of a robust quality assurance program; the configuration management
system implemented to support controlled development of the xLPR; tasks to develop model
validation, in the context of a quality assurance program; and results of a limited code
verification of FORTRAN modules common to the xLPR-GoldSim and xLPR-SIAM codes. In
the independent CNWRA analysis, xXLPR-GoldSim and xLPR-SIAM were found to have different
limitations and strengths in regard to future development potential. In general, for
xLPR-GoldSim, the GoldSim environment offers convenience at the cost of workarounds and
the need for external tools. For post-processing data, xLPR-SIAM offers flexibility, scalability
potential, and the possibility to develop integrated units for total risk assessments; however, an
extra investment is needed to build the frame to make it accessible to programmers of different
skill levels. Under a set of defined assumptions a cost estimate for NRC staff to use
XLPR-GoldSim or xLPR-SIAM within the next 5 years was made using the xXLPR-SIAM frame
was estimated to have a higher cost over a 5-year period than using of the xXLPR-GoldSim
frame, due to the extra investment needed to develop SIAM to a more mature state. However,
NRC staff would spend less time using the xLPR-SIAM because of the expected seamless
integration with post-processing tools.

References

NRC and EPRI. “xLPR Version 1.0 Report, Technical Basis and Pilot Study Problem Results.”
Washington, DC: NRC, Office of Nuclear Regulatory Research; Palo Alto, California:

EPRI. 2011.

GoldSim Technology Group LLC. “GoldSim Version 10.11.” Issaquah, Washington: GoldSim
Technology Group LLC. <http://www.GoldSim.com> 2011.

CONTENTS

Section
A B S T R A T e e
FIGURES ... oo et e et e e e e e s
A B LS ...
ACKN OV LE D GIMENT S ..o et
1 INTRODUCTIONttt e e e e e e e e ennns
2 CODE EFFICIENCY AND OPERATIONAL CONVENIENCE FROM END
USER’S PERSPECTIVE ...ttt
3 CLARITY AND READABILITY FROM AN INDEPENDENT MODEL
DEVELOPER PERSPECTIVE .. oot
4 FLEXIBILITY AND ADAPTABILITY FROM A MODEL DEVELOPER
PERSPECTIVE ...ttt e e
5 FUTURE DEVELOPMENT POTENTIAL «.coneeeeeee e
6 CON CLUSIONS ..ottt e e
7 REFERENCESo oo et

Figure

3-1

FIGURES

Page
An Example of Documentation Generated Using the Sphinx Python
Documentation GENEIALOr...... ... e 3-4
An Example of an Embedded and Interactive Class Diagram and Documentation
Generated USING EPYAOCooiiiiiiiiiiieeeeeeeeeeeeeeeeeee ettt eeeaenearnannee 3-4
Example of Accessing XLPR-SIAM Documentation Generated Using Epydoc............ 3-6
Time Estimates for the Cost of Using the GoldSim and SIAM Frames in a 5-Year
Period, Expressed as Probability Distribution and Cumulative Distribution
U] e 1o o - RS 6-8

TABLES

Page
Evaluation of INput Data ACCESSuuu e 2-2
Evaluation of Code EXECULIONoiiiiiiiiiieiee e 2-3
Evaluation of Output Data ACCESSieiieieee e 2-4
Code Documentation and Compatibilitycooooviiiiiiiiiiieeeeeeeeeee, 3-2
Evaluation of Frame Elements for the Development of Stochastic Models.................. 4-3
Comparison of Frame Features To Support Future Development............cccccoovevveeeee. 5-1
Estimate of the Time for GoldSim Use by NRC Staff...........cccooiiiiii 6-4
Estimate of the Time for SIAM Use by NRC Staff.....................oo 6-5
Estimate of Time To Finalize the SIAM Frame ... 6-6

ACKNOWLEDGMENTS

This report describes work performed by the Center for Nuclear Waste Regulatory

Analyses (CNWRA®) for the U.S. Nuclear Regulatory Commission (NRC) under Contract

No. NRC-04-10-144. The activities reported here were performed on behalf of the NRC Office
of Nuclear Regulatory Research. This report is an independent product of CNWRA and does
not necessarily reflect the views or regulatory position of NRC.

The authors would like to thank T. Mintz for the programmatic review; L. Mulverhill for the
editorial review; and L. Naukam for providing word processing support.

QUALITY OF DATA, ANALYSES, AND CODE DEVELOPMENT DATA

DATA: All CNWRA-generated original data contained in this report meet the quality assurance
requirements described in the CNWRA Quality Assurance Manual. Each data source is cited in
this report and should be consulted for determining the level of quality for those cited data.

ANALYSES AND CODES: The analyses presented in this report followed were performed
using the SIAM-xLPR Version 1.0 software (Klashy, et al., 2010) and the xLPR Model
Framework Version 1.0 (GSxLPRv1.02_MO02) software (Mattie, et al., 2010). All analyses
performed for this verification and validation report followed the CNWRA Quality Assurance
Procedure—014, Documentation and Verification of Scientific and Engineering Calculations.

References

Klashy, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments
Modular-Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.”
ORNL/NRC/LTR-247. Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.
Mattie, P.D., D.A. Kalinch, and C.J. Sallaberry. “U.S. Nuclear Regulatory Commission

Extremely Low Probability of Rupture Pilot Study: xLPR Framework Model User’s Guide.”
SAND2010-7131. Albuquerque, New Mexico: Sandia National Laboratories. 2010.

Vi

1 INTRODUCTION

The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research has
entered into a cooperative program with the Electric Power Research Institute (EPRI) with the
goal to develop a modular-based, probabilistic fracture mechanics tool or code capable of
determining the probability of failure for reactor coolant system components. This code is
referred to as extremely low probability of rupture (XLPR). The intention of the code is to
encompass a range of physical processes, to be flexible to permit analysis of a variety of
service conditions, and to be adaptable to accommodate evolving and improving knowledge. A
modular design is preferred to allow for additions and modifications.

A pilot study sponsored by NRC and EPRI, and performed by Sandia National Laboratories and
Oak Ridge National Laboratory was conducted as a proof of concept to test (i) the feasibility of
developing probabilistic models for failure mechanisms for a component of the piping coolant
system, (ii) configuration management and quality assurance for multiple-party code
development, and (iii) existing tools for the prompt deployment of probabilistic models (NRC and
EPRI, 2011). The problem of initiation and growth of primary water stress corrosion cracks in a
dissimilar metal pressurizer surge nozzle weld of the piping coolant system in a nuclear power
plant was selected as the subject of the pilot study. To test existing tools for quick

deployment of probabilistic models, the commercial GoldSim® (GoldSim Technology Group
LLC, 2011) software and open source tools [Structural Integrity Assessment
Modular—Probabilistic Fracture Mechanics, or SIAM for short) (SIAM-PFM)] were identified to
support a modular development of the XLPR code. GoldSim is a Monte Carlo simulation
software to model dynamic systems. GoldSim has been used to model diverse systems in
radioactive waste management, environmental problems, and business problems. Problems in
risk analysis and reliability engineering have been addressed using GoldSim (GoldSim
Technology Group LLC, 2011). SIAM has been used to deal with problems in vessel fractures,
dislocation-based fracture and cleavage initiation in ferritic steels, and piping reliability including
seismic events (Klasky, et al., 2010). SIAM is intended as a framework to include modern
principles of probabilistic risk assessment to support the analysis of nuclear power plant safety
issues (Klasky, et al., 2010). Reports on xLPR-GoldSim (Mattie, et al., 2010) and xLPR-SIAM
(Klasky, et al., 2010) are available from the model developers, who discuss results of the pilot
study and provide self-assessments of the merits of the GoldSim and SIAM frames.

The objective of this report is to provide an independent assessment of the GoldSim and SIAM
frames to support development of the xLPR code. The evaluation focused on (i) ease of use
from a user perspective, (ii) readability from a model developer perspective, (iii) flexibility and
adaptability from a model developer perspective, and (iv) potential of the frame for expansion of
XLPR. To develop metrics for comparison, proposals were shared and discussed with NRC
staff and representatives from the nuclear power industry; feedback was elicited and
incorporated into the definition of those metrics and approaches to perform the comparison.
The comparison metrics were initially intended to be quantitative. However, as the evaluation
proceeded, it became evident that qualitative and subjective comparisons were not entirely
avoidable. For each comparison element, GoldSim and SIAM were graded according to a
five-star system. For each comparison element, an expected case to which the frame was
compared and graded is briefly described. The comparisons are described in Chapters 2 to 5 of
this report, covering elements (i), (ii), (iii), and (iv) previously listed. The bulk of the sections is
presented in the form of tables. A brief introduction precedes the tables to describe the
comparison approach. Each section concludes with a summary of the main contrasts, findings,
and recommendations for enhancement. Chapter 6 is a concluding analysis section informed

1-1

by findings in Chapters 2 through 5. The concluding analysis includes estimates of the time it
would take for NRC staff to use the frames in the next 5 years under a set of defined
assumptions. Comparing the frames using a metric of time and staff hours allows for contrast
between the frames, which could be used to inform a decision of further model development.

This report includes three appendices. In Appendix A, elements of a robust quality assurance
program are discussed. The configuration management system implemented to support
controlled development of the xLPR codes is considered in Appendix A. Tasks to develop
model validation, in the context of a quality assurance program, are provided in Appendix A.
Appendix B provides results of a limited code verification of FORTRAN modules common to the
XLPR-GoldSim and xLPR-SIAM codes. The verification exercise was implemented as an initial
task to allow the writers of this report to become acquainted with the concepts of the xLPR pilot
study. Appendix C details the approach of inserting a simple module into the xLPR-GoldSim
and xLPR-SIAM codes used as the basis for the evaluation documented in Chapter 4.

1-2

2 CODE EFFICIENCY AND OPERATIONAL CONVENIENCE FROM END
USER’S PERSPECTIVE

The objective of this chapter is to evaluate operational convenience of xLPR-GoldSim and
XLPR-SIAM from the point of view of the end user. Three users were requested to exercise the
XLPR codes, launch a multiple-realization run, and access the output data. The users had
diverse backgrounds with respect to programming, ranging from very experienced to limited
experience. All of the users were use to employing routinely technical software to perform
analyses. The users were asked to evaluate (i) input data access, (ii) code execution, and

(iiif) output data access. Under (i) input data access, the users were requested to work with
input parameters and evaluate the convenience of modifying values, modifying distributions,
changing input parameters from constant to distributions or vice versa, and changing the
distribution type from epistemic to aleatory or vice versa. With respect to the epistemic/aleatory
treatment of uncertainty, the xLPR codes were designed to separate parameter value samplings
associated with distributions representing epistemic (or reducible) uncertainty from samplings
associated with distributions representing aleatory (or irreducible) uncertainty. This separate
tracking allows expected values to be computed over the epistemic or aleatory space. In
principle, only the epistemic uncertainty can be reduced with further analyses or experimental
characterization; thus, this type of uncertainty is central in a decision making process. For
further discussion on the epistemic/aleatory split, read the framework reports of Mattie, et al.
(2010) and Klasky, et al. (2010). Under (ii) code execution, the users were requested to
evaluate the convenience of launching a run, identify useful information displayed during code
execution, and record the central processor unit (CPU) runtime for a run with a relatively large
number of realizations (50,000). For (iii) output data access, the users were asked to evaluate
the convenience of locating output for graphical display and generating such graphical displays.
They were also required to evaluate the display of output statistics, the availability of tools to
export data, and the convenience of those tools. The availability of multiple-realization outputs
to use external tools to compute correlation matrices or other sensitivity analysis techniques
was also evaluated. The xLPR codes are distributed with a couple of tools to post-process the
raw output data. These codes are referred to as TRANSFORMERS and EXPECTATION.
TRANSFORMERS modifies the multiple realization output data to account for detection of
cracks during inspection or due to leakage detection. It is assumed that once detection occurs,
the pressurizer surge nozzle weld is repaired and no more cracks develop in the repaired
component. EXPECTATION is a code to compute statistics over aleatory and epistemic
spaces. For example, if 1,000 epistemic realizations and 50 aleatory realizations are
considered, XLPR codes execute a total of 1,000 x 50 = 50,000 realizations. EXPECTATION
computes averages over the aleatory space and consolidates the 50,000 realizations into
1,000 epistemic realizations. Each epistemic realization is an average over 50 aleatory
realizations. The 1,000 realizations represent uncertainty in the output due to the epistemic
uncertainty in the inputs. For a detailed discussion of the TRANSFORMERS and
EXPECTATION codes, see Mattie, et al. (2010). Both xLPR codes use these post-processing
tools, but are executed in a different manner. The convenience of execution of these codes and
the availability of the output data were also considered in the evaluation in this chapter.

The results for (i), (ii), and (iii) are summarized in Tables 2-1 to 2-3. The third column in these
tables represents an expectation used as reference to assign a star grade. A five-star system
was selected, and stars were deducted depending on whether a code was deemed to fall short
of the expectation. The tables identify and briefly discuss strengths and shortcomings.

2-1

aoepaul Jesn |eoiydelb = |ND

eslaA 80IA Jo olwa)side 0} Alojes|e
wouy Jeyeweled Aue sbueyo o} s|dwig

esJaA 80IA IO
olwe)side 0} Aiojes|e wouy yoyms 0} papiroid nuaw umopjind ajdwig

Ng & g \&
NN NN

esJaA 92IA IO ‘olwayside
0} Aiojes|e wouy ebueyd 0} a1} [99X] 8} Ul paiayo youms a|dwis

K

BS19/\ 991 J0 Alojealy 0} 13)aweled dlwajsidg ue Buibueyn

BSJaA 99IA JO (sI9)oweled
juejsuod 0} Jayeweled pajdwes)
olyseyoo}s woly sbueyod o} s dwig

BSJOA 99IA JO (sI19)oweled
juelsuod 0} Jayeweled pajdwes) o1seyo0]s woly abueys oy s dwig

XXXEN

‘(swoslaquind ale sabueyd) Jusws|d wiSp|os) Buipuodsaliod ayy ul
saoualajal |99 [99x3 oy} Buluyepal salinbau Josyspealds |90x3 ejep
indul sy} ul smod Buiis|eg esJoA 99IA JO J1}SEYD0]}S 0} JUBJSUOD WO}

Jajoweled e abueyd o) papasu ale 3ji [BPOoW dy} 0} SUOIEILIPOIA
‘suonepwry

N {/

Bs19/\ 921/ 10 uonnquysig o} Juejsuo) wol4 buibueys

pajelauab Ajjeonewoine aje
Buissaooid-}sod Joj sy} uonjeolyioads

spjay anbiun
Ul payioads ale sbues uoneNwig

(sanjea uesw

Jo ajuenb uanIb je paxy siejpweled
pajdwes |je “6-3) syndui onsiuIWISIBP
piepuejs ajelauab 0} ajdwis

Buidwes paje|a1109 1o}
payloads aq ued suone|eL0d Aleulg

s|qe|ieAe
aJE SUOIOUN} UOHNGLISIP UOWWOD

sindul }nejap pue sieloweled
10 Ajuolew ay) abueyo ues Jasn ay]

suoisinold aBueyo jndul sidwis
pue sadepsjul Aus Blep aAlINIU|

‘Indul ejep ay ul

juasaud ale sbng swog -palimpiey ale sdays swi ay] “pasim-piey
aJe sanjeA Indul }nejoq “Bunse) Joj JusiusAuod si uondo ue

yong ‘(senjea ueaw Jo s|uenb uanib je paxy sieyeweled pajdwes
Jle “6°9) sindui onsiuiwialep piepuels Bunelsuab Joy uondo ou si
aiay] ‘(sie1oweled sjeods pue uonedo| sy} Aq payioads si uonnquisip
wuojun e “B8) aAnINjuluou s| sisjeweled adeys-9|EaS-UO[}EIO] JO
asn ay] ‘Buidwes 1o} suoiouny UORNQUISIP JO }8S pajiwl| B S| a1dy |
‘Suonepwry

"JO.I8 Josn SpIoA.
yoluMm (NOILYLOIdXT Pue SHINHOASNVY L) siossaooid-jsod
10} syndui Jueas|al sjo4u09 ANy (NS 8YL IND B ul snusw umopjnd
Aq papiroad suoido pue sgej Ui payisse|d ejep yim soeusiul ojdwis
SYIBUSHS

[N N

b M. /7 Nt
LS LS w/**

"pPaINoaxa S| 8SeD JNejapuou e JI suold 10118 S| Yolym ‘pajonijsuod
Allenuew a1e NOILYLO3dXT Pue SHINHOASNVYL 404 So|y

indui 8y ‘se8oue)sul M3} B Ul 8de|d U0 UBY} 8I0W Ul paulap a4 O}
spaau Bumas uonenwis swes ay] “sabueyd [gpow salinbal (jewsou
0] wloyun wouy “6°8) adAy uoinquisip buibueyd ‘spunosexiom

Buisn Aq 1deoxa ‘Buiuunl si WISP|OS) 8jIym 3|qISSade Jou

SI[90X3 "unJ 0} |9pow 8y} Jo} palinbal si [99X3 JO UOISIBA Juadal Y
‘suoneywry

‘Odd wigp|o9 Buisn sisyoweled Jndul ayy Jo sajyuenb

payoads je payoune| 8q ued suny ‘sanquye Aq sisleweled
nduy Buipos Jo ‘sisjewesed ndul jo uoiedo| ayy Buney|ioey

sny} ‘spJomAay Aq paiayjiy pue payoleas aq ued sal [99x3 “69)
‘suolouny papualxe wiopad 0} JUSIUBAUOD S| 8JBMS)UI [99X]

oyl "9dBHSIUI plEOqUSEP (WISP|OD PUEB ([99X] (HOSoLolN djdwis
syibuans

N

sanje Indu| Buibuey? 1oy suondQ a|qejieay

uonejoadxgy

NVIS-¥d1X

wisplo9-¥d1x

S$S9090Y ejeq Induj jo uonenjeAay ‘-z a|qel

2-2

Ua-Z€ -99¢ VY
‘ZH9 € ‘onp ZaioQ [8ju] ‘dX SMOPUIA

(podxa ejep + uni) sinoy 9¢:

Hodxe ejep 1o} 4y 00:Z + Y L+:9

1g-zZ€ ‘@9t INVYH 'ZHO €6'C ©
048 N Z! w810 l8IU] ‘L SMOPUIA

(Hodxa ejep + uni) sinoy 9y:¢

SNdD Ino} uo unJ |jjeted Joy 1y gy:l
Hodxa ejep o} 4y $0:Z + Y 80:G

¥4a-Z¢€ ‘a9% WYY ZHO 8'C ©
098 NdO ! wi®I00 IBU| ‘L SMOPUIM

(Hodxe ejep + uni) sinoy 6E:€

Hodxa ejep 1o} 4y $0:Z + Y GG

Ua-zZ€ ‘992 VY ZHD /92
®© NdD ong 8409 [8ju] ‘dX SMOPUIM

(Hodxa ejep + uni) sinoy g¢:G

SNdD OM] uo unJ |sjjesed Joy 1y /1:9
Jodxa ejep Joj 4y 0Z:6 + 44 21:01

soadg J9yndwo)

(sanop) suonezijeay 000°0S 10 Wil NdD

sa|i} 60oj ul 10 9|1}]opow
Y} Ylm panes s| uonewlojul Aoy

sBuiuiem pue sabessaw 10119
‘Jaquinu uoljezijeal ‘awl} UOIINJSXS
:unJ e Jojuow o} uonewloul Aedsig

‘unJ aaua ay} Buunp

9[qISIA S| Jey} swi} pasdeje pue youne| jo awi jo Aejdsip oN (sjnsal
3|1} 109(01d 8y} yum panes) jusisisiad S| Jey) 99eLd)ul/UOEIO|
9|qIssadoe Ajipeal e Ul awuni ay} jo Buiaes ojjewoine oN
‘Suonepwry

‘swajqoud asoubelp 0} paubisap sindino usaidg -9)qibs| IndinQ
'syibuang

LN

apow Buissaoo.d |ajjeed ul payoune)
S| [opOW 8Y} JI paulel}suoD s| uonezieal Aq pake|dsip uonewlojul ay |
‘SUCHENW

‘payoune| si uni 8y} a10j0q pauado ase Asuyy yi ‘owi

[BaJ ul uonezijeal e Joj synsal Aejds|p UBD SJUSWSIS JNSSY JUSAD
3y} J0 awi} 8y} pue Juand ainydni adid e sjeubis jey) pieoqysep

8y} ul uopng uaaib e si alay ‘(81ey Yea ‘syoel) ||lepn ybnoay
‘S30BID 99BLNG ‘PBIS8|BOD SHORID ‘pawIo syoel) “B6°8) siojealpul
awos Ae|dsIp 0} pasnh sjuawae pJeoqyseq ‘d|l [9POW aU} YIM panes
S| unJ e 10} swi} pasdeld ay] -uonewsojul uni jo Aejdsip paysijod
syibuans

XN

uny e buung Aejdsiq uonewuoju|

a|dwis
pue aApInjul s unl e Buiyoune-

"aul| puBWWOD
ay} woJy uns e Buyoune Joy uondo ue s| a1ay] plemiopybiens
S| unJ e Bulyoune "ge} uonnoaxa-uni paziuebio-||dapn

AXRNX

“au|| puBWWOD 8y} wouy unJ e Buiyoune| oy uondo ue si alay]
‘AlISea pape)jsal pue papasu jl pasned 89 UBD UNY “unJ B youne|
0] 9|qejieAe uod| ‘(pJeoqysep ayl ybnouyy) sbeyy indul 1os 0} ajdwig

XRXAX

uny e ysune

uonejoadxgy

WVIS-dd1X _

wisplo9-¥d1x

uoiNdax3 apoI o uonenjery ‘z-z a|qel

2-3

suonezieal aidiynw

wouy syndino anjea-a|buls 1oy
8|ge|ieA. aJe (suonnguisip aAleINWND
10 uonnqLsip Ayjigeqoud) sjoid

(sonsnels ejep mel Jo ‘aoeds olwa)side
10 Alojesje Jano }i|ds soisne)s o'l
solsnels |nybuiuesw moys sjo|d

awn
s|qeuoseal e Ul pajesausb ale sjo|d

(s10(d |iey-as10Y)
suolezijeal |enpiAlpul pue ‘ssjienb
‘ueaw moys sjod ‘suns onsijigeqoud o4

‘(awayos buydwes Aiojesje-oiwalsida ay} 10} Junodoe Jou

S90p 1l Jey} pue palinbal uonoelsyul Jasn Juesyiubis

ay} uaAIb |nyasn AJan jou s| yalym ‘synsau joid o} |90x3 ul papiro.d
sem aje|dwa) e) syndino anjea-g|buls Jo suonNquUISIp SAIEINWND

Jo suonnquisip Joj syoid ou ale aisy) “sa|y Indino dlwslside
NOILY1O3dX3 8U} WoJy puewsp uo payndwod ale solsie)ls jey}
sieadde 3| ‘(8zis ul [lews ale sonsiels payndwodaid Bujuieluod so|i
‘1anamoy) pajessuab aq o) sAeidsip oiydeub Jo) swin Buo| e sexe} }|
‘a|qe|leAe jou aJe (Alojes|e pue ojwajside pauiquiod) aoeds Jejeweled
mel ay} Jano sAe(dsip oiydels) -sjgejieae jou ale sjo|d [1e}-9SI0H
‘suonepwry

-9oeds olwa)sida ay) Jono sonsiiels moys sAejdsip oiydelb ayy

‘sny] -Buisseooid-}sod NOILYLOIdXT PUe SHINHOASNYYHL woy
sjndino asn sAe|dsip oiydeib ay] -s|qejiene ase sAeidsip |eonsiels
KIVVENTS

XXX

20N

‘Ae|dsip

olydelb pue Buissasoud-jsod woly saji Indino peal 0} papasu

s| aremyos Aped-paiyl "sjooy Buissaooid-jsod salinbai seoeds
olwajlsida pue Alojesje Jan0 sonsiels pajeledss jo uoneindwo)
‘suoneywry

"S|EAJSIUI ©OUSPIIUOD pUB SBAIND
oljsie)s ay} Jo aoueleadde ayj uo [04ju0d djenbapy "ejep (olwajside
pue Alojeale paulquiod) mel 1o} Soishels Jo Aejdsip jusio
SUIPUBNS

(sanenp ‘ues|y) sonsiels buikedsig

(3pd “pn “Bdl “6°9) 8|y yewuoy oiyded
e ul sjoid podxa o} papinold ase suondo

Jes|o ale
saAInd ajdiynw yum sjoid Joj spuaba

sa|eos olwyebo| pue Jesul| usamieq
Yo)Ms pue ‘sjage| ppe ‘eoueseadde
abueyo o0} papiroid ale sjosuo)

pake|dsip

aq ued (sueaw Jo sajuenb “6°8)
sonsnels ‘sAejdsip onsijiqeqold o4
‘syndjno onsiulwIslep pue ansijigeqoud
10} 8|ge|ieAe ale sAe|dsip olydels

uolnoe Jasn Joulw
yum sjndino pajos|es Jo} pajessush
Ajjeonnewolne sAejdsip oiydeis)

‘a|ge|ieAe jou
ale sunJ 21SIUILWIS}aP WO} S10|d "INdINo onsIuILWLIS)ep B JO 8SeD Ul
pauyap a9 jou Aew Yyoiym ‘NOILYLOIdXT Pue SHINHOASNYH L
wol} sjndino uo spuadap Aejdsip oiydelb YIS nuaw umop|ind

B wolj pajoa|as si Jajoweled mau e uaym joid ayepdn o} uondo

ysaJjal 8y} }08|8S }snw Jasn ay] 'a|eds ojwyjlebo| 0} Jeaul| woly
yoyms e ueyy Jayjo ‘suondo Bumold Buibueyo 1oy} sjoJuod ou ate aiay]
‘suoneywry

“Jew.oy
4ad ui aji |eaiydeub e ajeald o} papinodd st uondo uy “uopng ysalel
e Bupyold pue nuaw umop|ind e elA ‘piemsojiybielss si sjojd Bunelsusan
'sybuang

AX¥

IR

“(6dl -6-8) sy jeoiydesb

a)eald 0} papinold ale suopdo Jusiusauo) ‘aoueseadde joid

3y} Jo |043u09 919|dw o9 apinold sAe|dsip oiydels) ‘Juswald Ss}nsal
B JO UOYINQ B JO 21|19 8y} yym ‘piemiopybiesss si sjold Bunelsuss
‘syibuans

NN

Kejdsig oiydei e Buneisusn

padnouib Ajjeoibo| ale sjnsey

payeoo| Ajises aq ued sjuswsa|e olydeis

‘loo} Buisseooid
-1s0d ayj Jo uonnoaxa Jaye padnolb AjjusiusAu0D ale s)nsal 8yl
syibusng

RN

XXAAY

"EJEP UOI}BZI|EBI[}|NW BI0}S 0} Pa¥08Yd, ©q UED SjuUsWa[d WISP|0D
‘papaau JI ‘UuoiINdaXa Jaye paralyal g ued yoiym ‘Aeidsip oiydelb
Joj ejep |euonippe apiroid [apow a8y} ul sjuswis|g “paziueblio
Alleaibo| pue pJeoqysep e ul payoel} aJe ejep Indino jJueas|ay
syibuans

XXX

Keidsiqg oiydelis 1oy ejeq Buneoso

uonejoadxy

WVIS-dd1X _

wisplo9-ddIx

S$S900Yy ejeq IndinQ jo uonenjeay ‘g-z a|qel

2-4

aoeds o1wa)sida ay} JaA0 sashjeue
Aaiisuss poddns 03 9|gejieAe ale ejeq

(syndino

uolezijeal a|dnnw pue sisjpweled
indul pajdwes jo senjea ayy ¢'6'9)
a|qe|jieAe Ajipeal ale sisAjeue AjIAlISUSS
Jeulajxa Jayjo Buionpuod Jo ‘sashjeue
uoissaibal bujwiopad ‘seoujew
uole|a4109 Bunndwod Joy papasu eleq

aoeds olwa)side

ay} Jano sasAjeue Ajaisuas Buiwiopad smojie |00} NOILVY.LO3IdX3
Y} WOJ} UOHBWIOUI YIIM PauIquIod ‘uoljewlloul siy] 's}os

olwa)sida pue Alojes|e ojul pajesedas ale sanjen Jajoweled pajdwes
‘syibuans

¥X¥¥¥

"awl0sIaquind aq Ued 3|l |opow a8y} 0} sjuswisnipe

yong -sjas Aiojeaje 1o olwalsida ojul sisyeweled jndul ay) asied 0}
pue sanjea pajdwes jndul ay} 386 0} pajsnipe aq 1snw aji |apow ay}
‘1anamoy ‘sasAjeue AjAnIsuss [euaixs Loddns 0) a|qejieAe ale eleq
‘Suoneyuwry

Jds o1waysida-Ai0jesje ay) uaalb anjea
pajiwi| 9ABY P|NOM SOJLIJEW UOIIB[S1I0D) "S)USIONS0D UONE[S1I0D
aIndwod pue sasA|eue AJIAIIISUSS JONPUOD 0} S|00} SBPN[OUl WISPIOD

TN

R e o 2

sasAjeuy Ayanisuag poddng o] ejeq jo Ajjiqejieay

(eonewsyie

‘qejen ‘|@ox3 “6-a) aiemyos |eonhjeue
J0 Bumord Jayjo 0y papodwi aq

0} JUBIUBAUOD S| E}ep Indjno Jo JewloS

‘suwn|od a|dpinw ypm

xujew e o} pasoddo se (A‘x) $)}00|q JO Wi} 8y} Ul pals| ale Sales
a|diynw Buluiejuod sjoid wouy ejeq ‘94emyos [eusaixs ul payold
aq 0} uone|ndiuew |euonippe spaau ejep jndino sy} Jo Jewloy ay |
‘Uoneywry

‘pasn aJe sjew.o} Atejaudoid
ON ‘|29x3 ojul papodwl 8q UED Jey} W0} 1x8) ul pauodxs ejeq

NN

‘pasn aJe sjew.oy Alejolidold oN aiemyos [eolA[eue Jayjo JOo |99X]
0] pauodwi Ajjoadip g ued jey} wio} xuew ul pauodxs ale ejeq

XHNN

jewlod ejeq payodxy

sAe|dsip oiydeib
woJj papodxa AjjusiuaAuod ale ejeq

3|l 1x3) e se ejep podxe 0} o|ge|ieAe S| uonung

AXRNX

3|l 1X3) e Se ejep podxa 0} a|qe|leAe s uojng

XHNNX

ejeq podx3 o] sjoo]

uonejoadxy

NVIS-¥d1X

wisplo9-¥dIx

(panunuo)) ssadoy ejeq IndinQ jo uonenjeay ‘¢-g a|qel

2-5

Discussion and Recommendations

From the end-user perspective, there is no high contrast in the ranking of the codes with respect
to the considered star systems. xLPR-GoldSim and xLRP-SIAM codes present different
advantages and disadvantages. xLPR-GoldSim provides polished interfaces and plotting
options. However, XxXLPR-GoldSim lacks flexibility to perform a number of actions

(e.g., embedded post-processing, limitations to manipulate inputs, cumbersome to extract data
for sensitivity analyses). The runtime for xLPR-GoldSim is at least twice as long compared to
XLPR-SIAM, accounting for time needed for data export. The runtime can be shortened
significantly by taking advantage of parallel processing spanning the realizations among up to
four CPUs using GoldSim Pro (more than four processors can be enabled by GoldSim’s
Distributed Processing Module, at an additional cost). The total time (runtime plus data export
time), accounting for distributed processing in several CPUs, is at best comparable to the
XLPR-SIAM runtime. Note that a number of factors seem to affect the total runtime in
XLPR-GoldSim, including the amount of RAM memory, CPU frequency, hard drive spin
frequency, and the hard drive hardware interface (IDE or SATA). The data export time can take
several hours, and parallel processing cannot be used to reduce it. Other strategies could be
designed to capture outputs during runtime using dynamically linked libraries to address the
lengthy data export time.

XLPR-SIAM offers flexibility, but its graphical user interface (GUI) is less polished and it lacks
plotting options. In principle, all of the xLPR-SIAM limitations noted in Tables 2-1 through 2-3
can be addressed with programming effort. In contrast, the xXLPR-GoldSim limitations are
mostly intrinsic to the GoldSim frame and may not be solved except by changes by

GoldSim developers.

General Recommendations

During this evaluation, it was noted that both codes implement only binary correlations for input
parameters. None of the codes have the capability to sample ternary or higher correlation
systems. For example, to completely define a system with three correlated variables, A, B,

and C, the following correlations need to be specified: correlation (A, B), correlation (B, C), and
correlation (A, C). However, one and only one of these correlations can be currently specified in
the xLPR codes; thus, the definition of correlations is incomplete and it is not possible to
properly generate correlated samples. Consideration could be given to other sampling
algorithms that provide flexibility to fully specify correlation or covariance matrices. Sandia’s
Latin Hypercube Sampling Software (Swiler and Wyss, 2004) is an available tool that allows for
complete definition of covariance matrices. This code is distributed as part of the DAKOTA
Project (dakota.sandia.gov), which also includes other tools for optimization, parameter
estimation, and sensitivity analyses. The current release of DAKOTA is Version 5.1

(Adams, et al., 2010).

The specification files for the TRANSFORMERS and EXPECTATION tools (i.e., options.txt and
EXP_options.txt, respectively) require a different number of text rows depending on the case
considered. This type of approach is inconvenient because the user is forced to consult the
user guide to make sure that the appropriate entries were provided in the input files options.txt
and EXP_options.txt. Instead, it is recommended to fix the number of input lines in these files,
properly labeling the entries. It should be clear to the user that some of the inputs are used only
if needed by the case under consideration. Currently, XLPR-SIAM generates the appropriate
files options.txt and EXP_options.txt from data input in the GUI. xLPR-GoldSim, on the other
hand, needs manual modification of those files, which is error prone. The errors can be

2-6

minimized by fixing the number of lines in the input files options.txt and EXP_options.txt. Also,
some entries in these files could be controlled by entries in the dashboards (e.g., number of
stochastic and aleatory realizations) and dynamically linked libraries (DLL).

The output files from EXPECTATION do not include headers. Readability of these output files
will be enhanced by the addition of headers. In particular, in the statistics files (files with a
_stat.txt suffix), the inclusion of headers to properly identify columns associated with mean
values and quantiles will help the user eliminate the extra step of consulting the user guide and
additional input file defining the quantiles (i.e., quantiles.txt). Also, a standard deviation column
is recommended to be added to the statistics files.

XLPR-GoldSim Recommendations

. Allow some control of input files to the TRANSFORMERS and EXPECTATION codes from
the GoldSim dashboard, via DLLs. This approach would minimize user error.

. Consider developing a DLL to capture realization data to alleviate the problem of extended
export time. For example, a time-series output can be captured into a text file, after a
realization is completed. A time series per realization would be appended to the text file
as a new row of data. This approach can be an efficient alternative to data exporting.
Such an approach may not significantly decrease the code efficiency and yet will bypass
the need for manual data export. The disadvantage of this approach is that it does not
work for parallel runs spanning several processors. Also, the matrix of data in the text files
would need transposing before use in the TRANSFORMERS code.

XLPR-SIAM Recommendations

. Expand the set of distributions for sampling. Currently, only a small set of distributions
is available.

. Provide an option to generate standard deterministic inputs (e.g., all sampled parameters
fixed at given quantile or mean values).

. Explain in the user guide how scale-shape-location parameters map to standard
parameters to define distributions.

° Provide information on the total run time while the run is executed. Save the total
execution time in a log file.

. Allow for plots (cumulative distribution and probability density) of single-value outputs per
realization to eliminate the need of the Microsoft® Excel® template file. Perform
appropriate statistics for the single-value outputs accounting for the epistemic-aleatory
sampling scheme.

. Expose plotting options. The graphics appear to be generated using the Qwt
(Rathmann, 2011) library [with PyQwt (Vermeulen, 2011)], which is a library with a range
of plotting options.

. Allow for automatic refresh of plots (e.g., when different data are selected from the
pulldown menu).

2-7

Allow for plotting of deterministic outputs.
Include horse-tail plots and plots of raw data.

Enhance the format of output data (matrix with multiple columns) exported from the
visualization results window.

2-8

3 CLARITY AND READABILITY FROM AN INDEPENDENT MODEL
DEVELOPER PERSPECTIVE

This section is aimed at enabling testers who are experienced programmers to comment on
clarity and readability of the source codes to support code maintenance. Programmers with
variable knowledge of GoldSim, Python, and FORTRAN were requested to study XxLPR source
codes and record the time needed to gain enough familiarity with the xLPR algorithms to
implement basic changes to the model. Three programmers were asked to study the source
codes of the xLPR-GoldSim to attempt specific model modifications, detailed in Chapter 4. Out
of the three programmers, only one was able to implement those modifications within a
reasonable amount of time (a maximum time was set a priori to avoid project overruns in
schedule and budget). This programmer succeeded within the limited time because he had
previous knowledge of both GoldSim and Python (main language for SIAM). The successful
programmer estimated that it took him approximately 25 hours to gain basic familiarity with
XLPR-GoldSim to initiate implementation of model changes. For xLPR-SIAM, the programmer
estimated 57 hours would be needed to gain enough familiarity to start working on the source
code. The programmer attributed the longer familiarity time for xLPR-SIAM to the need to work
with two languages (FORTRAN and Python) and several Python libraries [e.g., PyQT
(Riverbank Computing Limited, 2011)]. On the other hand, xXLPR-GoldSim only needs some
familiarity with GoldSim and FORTRAN languages. The other programmers indicated it would
take them much longer because they needed to gain required knowledge of FORTRAN, Python,
Python libraries, and GoldSim before comfortably implementing changes to the codes.
Estimates of the time needed to gain familiarity with the codes are recorded in Chapter 4 and
also used in the cost computations in Chapter 6.

The programmers were also asked to evaluate (i) existing internal documentation, (ii) capability
of the frame to incorporate and retrieve internal documentation, (iii) operating system
compatibility, and (iv) programming language compatibility (GoldSim or SIAM). Evaluation
results are recorded in Table 3-1. A five-star system similar to Chapter 2 is adopted in this
chapter. The Expectation column defines the attributes to assign the star grade.

Discussion and Recommendations
XLPR-GoldSim

The xLPR-GoldSim model is readable (i.e., it is possible to follow the model logic and the
computational sequence). XxLPR-GoldSim is visually organized in a manner that the flow of
information becomes clear. The readability is facilitated by visual aids (e.g., customized icons,
graphics, and influence arrows), the “function of’ and “affects” view trees to identify GoldSim
element dependencies, as well as the various browsing capabilities (e.g., GoldSim allows
browsing of elements by type). Many options are available to provide internal documentation:
text boxes, text per GoldSim element, hyperlinks, visual elements (diagrams/drawings/plot), and
customized icons. Extra effort should be aimed at taking advantage of internal documentation
capabilities, describing the action of GoldSim elements, and briefly explaining the computations
at the GoldSim container level. A GoldSim container is a box icon that groups a number of
computations in a single workspace.

Note that model readability was compromised in some instances by adapting the limited

GoldSim elements to perform specialized functions. For example, dealing with arrays to
separately track cracks and their properties, such as crack length, depth, and type (i.e., surface

3-1

g|dwis S|

9po9 Jo uone|idwo) "awel} sy} Yim
9]E2IUNWIWOD SPOJ B 9)EwW O} papasu
aJe sabueyo apod [BWIUIN ++D

pue ‘9 ‘Nvd.1404 ul pswweliboid
S8UIIN0IgNS PUB SUONOUNY YlIM

Bolelp ysijqeiss 0} a|qe|ieAe aoepusju|

‘uoyihd yum Bojelp sadoid

10} POpadU S| 9P0D DOBMS)UI BIIXD JOUIN “++D PUE ‘O ‘NVY1HO4
Ul pswwesBold suopouny 83ei0diooul O} 8|qe|IeA. e S|00} oBa)U|

‘suonouny
GolIsed [ensiA papuaixe Buipnjoul ‘[90x3 Ag usALp suonendwod asn
pue |99X3 0} 3ul| OS|e UED WISPIOD “WISP|0D UM bojeip sadoud
10O} POPO8U S| 9POD 9IBLIBYUI BIIXS JOUI\ "++0 PUB ‘D ‘NvHL1HO4d
ul pawwelboud suoiouny 83e10di00Ul O} S|gE|IEAE BJE S|00} S0BUS)U|

Agedwon abenbue buiwweiboid

swa)shs
Buneiado [eianss yum ajqnedwod

"‘Hoye juswdojanap pue Buibbngap aiinbal

[1m Xnui ypm sjgiedwod Ajiny WIS Buiyey xnuiq ul uope)idwod
Ja)je ‘aul| PUBLUWIOD B WOJ) PajNoaxa A||nySSeoons Sem apoo

8y} ‘JoAeMOH *9poo 8y} 83ndaxa 0} |ND 8y} youne| 0} a|qissod jou
SeM }| "XNUIT Ul NVIS-dd X Buljjelsur ul sseoons |eied sem aiay |

‘asneo ay} asoubelp 0} a|geun alom am ‘JSASMoY
{SQUIYOBW BWOS Jo} uoe|[ejsul Buunp palajunoous aiam salndua
‘swia)sAs Bunelado smopuip) yim ajgiedwod si NVIS-ddT1X

*/ PUB dX SMOPUIAA Ul PSJOU Sem suopng pJeoqysep
ul pappaquwa syuladAy o} asuodsal 0} psebal ul Joiaeyad jualayid
‘swiaysAs Buijesado SMOPUIA HOSOIDIN Yim 8|qiyedwlod s wiSp|oD

Angnedwo) waysAg bunesado

‘ulea)| 0} a|dwis

9JE UO[}E}JUSWINJOP [BUJSIUI UIBIUIEW
0} S|00} pue ‘a|dwis S| uoleUBWNIOP
|[BUIBIUI JO BOUBUBIUIBI

‘pauenb aq ueo pue
8|geyo.Jess SI UONBIUSWINOOP [BUIS)U|
‘puejsIspun pue peal o} Ases si jey
1ewJoy e Ul SI UOIIBJUSWINOO0P [BUJB)U|

"UOI}BJUSWINDOP |BUJBIUI
10} a|ge|ieAe ate suondo a|diny

"S|00} UOJEJUSWINJOP 8Sh 0} papaau S| buluies| enxg
VIR

(10ye18U86 UOEIUBWNOOP UOYIAd XNIHAS

10 o0pAd3 ay} 68) ANjIqiISSaooe UoiBIUBWNIOP JO Juswdojanap
aoueyUS 0) 8|qe|ieAe ale ssinpow pue swelboid Aued-pliy) ‘©2inos
uadQ "SjUBWIWOD BPOD 82INOS pue ‘sBulysoop ‘uonelausb JNL1H
:uoljejuswnoop |eulajul apiaoid o} ajgejieae ale suondo ajdi Ny
syibusns

‘9|ge|leAB SEM UO[}EJUSWINIOP
Jadojansp [ewiuiw I uaAad ‘suoljeindwod ayy Buipuelsiapun
sajeyl|ioe} Ajjealb (4o uonouny, pue ,sloaye,) salouspuadap asuanjul
Jo AJjigejieae ay) “(suool paziwojsnd ‘sjojd/sbuimelp/swelbelp)
SJuSW|d [ENSIA pue ‘syulpadAy ‘Juswale wiSpPloo) Jad 1xa) ‘sexoq
1X3} :uoneuswWNIop |eutdjul apinold o) a|qejieAe ale suondo ajdiniy
syibuans

XX XA

uonejuUaWND0([BUI)U| 9A3LI}RY pue ajesodioou] o] aweld jo Ayjiqede)

"9p02 904N0S 8y} UIYIM

UOIJeWIO}UI JO MOJ} DY} puelsiapun o}
2INnjonJ)s 8|l 01UOJOB|S 8U} Ul Pa)eoo|
10 [8powW 8y} Ul pappaquia Jayle
SjuUSWIWIOD YBnous sapnjoul 8pood ay L

‘uoljewloul pue suoiendwoo
1O MOJ} 8Y} PUEB suofjoUNy JO UOlOE
8y} puejsiepun 0} Jawwesboid ay}
Buimole SjuBIWOD YjIm ‘Ajleulajul
pajUBWINOOP ||oM S| P02 SIY |

"alemyos Bunelousb-uoeluawnoop |4y 8y} Wolj a|qe|ieae

suondo jo abejueape Bupe) pue sbuysoop Buizeindod Aq panoidwi
Apealb aq ues uoneuawWNIoP |dV HdTX-INVIS 4O Ssaujnjasn

8yl "pajwi| SI uolew.oul d|ge|ieA. ay) Ing ‘e|qe|ieAe S| salyoselaly
8|NpoW pue SSejo BuIMBIA 10} UoiBIUBWNOOP 14V Yd1X-NVIS,
Buismouq Joy uondo ,djaH, 40 8sn ‘papiroid Jou i suofouNy JO AsN
ay} jo saidwex3 "sauus ||n} 9Aey sBuIsOOp uonouny/sseo may AluQ
‘suonejuwr]

N/ N N Nt N
AR {
P S NN “ia

"JO0 ebejueApe Ua)e)} Jou sem Ajljigeded

uonejuawnoop ‘|elsuab u| "ajgejeae si (payeindod Ajjewiuiw

ale Juawald Aq spjal uoidiosap) UOIIEJUSWINDOP [BUJSIUI [BWIUIA
‘Suoneyuwry

adAy Aq

SjusWa® WISP|0) BuISMOIq SMOJ|E SWEI{ ‘POPSSU UOIEIUSWNIOP
BJJX3 [BWIUIW Y}IM ‘UOI}BUIIOI JO MO} 8} JO Buipueisiapun
9e}l|108} SJUSWSIS [9pOoW JO uoneziuebio [BNSIA 8y} pue ‘Smolle
90UaN}Ul ‘SUOHOUN) WISPIOS) SAleU Sjo8ye, pue Jo uolound,
‘sybuang

uonejuawWINd0(|eutaju] bupsixg

uonejoadxgy

WVIS-dd1X _

wisplo9-¥d1x

Aqneduiod pue uoneUBWIND0Q 98P0 'I-€ BIqEL

3-2

crack or through wall crack), required a clever use of looping containers, elements to trigger
discrete changes, and integrator elements. In a traditional programming language, such as
FORTRAN, dealing with arrays and array updates is more transparent. For example, an array
index can represent a crack and the appropriate array entry can be directly accessed within a
loop block. GoldSim can be adapted to perform different functions and workarounds can be
implemented using existing GoldSim elements. As models grow in complexity, however, these
workarounds tend to compromise model readability and transparency. The final outcome, in
our opinion, is that a complex GoldSim model requires a dedicated custodian with complete
familiarity of the model and understanding of the workarounds to provide maintenance to

the model.

XLPR-SIAM

The xLPR-SIAM is difficult to follow, in general. Some model components (e.g., timeloop
module) are well documented, have a linear sequence, and are easy to understand. For
example, the main sequence of computations within a realization is controlled by a FORTRAN
subroutine referred to as the timeloop module, which is of a straightforward structure. In fact,
some of the programmers used the FORTRAN timeloop as a reference to decipher the
computational sequence in XLPR-GoldSim. For some other components, the information flow
sequence is not as transparent (e.g., Python code for data management and definition of GUls).
Part of the difficulty in properly reading the source code is that familiarity with Python,
FORTRAN, and Python libraries to develop GUIs is required. An object-oriented structure was
selected to write the Python code, while FORTRAN follows a traditional functional and
subroutine approach. The internal documentation has variable levels of detail. The FORTRAN
timeloop module was found to be internally documented with an appropriate level of detail. The
Python objects, on the other hand, could include additional documentation and examples to
facilitate an independent programmer’s understanding of the intended flow of information.

Using the Python programming language could significantly enhance the internal documentation
of Python functions. The standard language includes a feature for defining documentation
entries for classes, methods, functions, and modules in documentation strings (commonly
referred to as docstrings). Docstrings can incorporate descriptions to explain the purpose and
usage of the code, as well as provide examples. The docstring entries can be accessed by
default from the Python interactive interpreter where formatting of the docstring is automatically
handled by the pydoc module (Python Software Foundation, 2011a). The pydoc module is
provided in the Python standard library and can also be used to generate an HTML version of
the documentation for viewing in a web browser. In addition to pydoc, the doctest module
(also included in the standard library) (Python Software Foundation, 2011b) can utilize properly
formatted code usage examples included in docstrings to perform automated testing of the
source code.

Use of open source, third-party tools like Epydoc (Loper, 2011) or Sphinx (Brandl, 2011) can
greatly enhance information from docstrings and improve documentation accessibility. Both
documentation generation tools can take advantage of markup text to generate enhanced
formatting and hyperlinks, as well as provide convenient documentation search capabilities for
the end user. The Epydoc tool can also be used to auto generate class diagrams that are
embedded in the HTML documentation and contain hyperlinks that permit the user to

navigate documentation by clicking directly on the class diagrams. Figure 3-1 is a screen
capture of documentation generated using Sphinx that can be read using an internet browser.
The screen capture shows highlighted Python code, and a quick search field, which are
automatically generated by the Sphinx functions. Figure 3-2 is a screen capture showing an

3-3

& Python v2.6.6 documentation » The Python Standard Library »

Table Of Contents 2. Built-in Functions
: Femﬂ‘lné‘l? it-in

previous | next | modules | index

The Python interpreter has a number of functions built into it that are always available. They are listed here in alphabetical order.

Previous topic abs(x)
1. Introduction Return the absolute value of a number. The argument may be a plain or long integer or a floating point number_ If the argument is a
. complex number, its magnitude is returned.
Next topic P g
4. Built-in Constants all(iterable)

This Page Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:
def all (iterable):

for element in iterable:
Q ick search if not element:

return False
|G return Trus

= or a module,

or function nam New in version 2.5

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:
def any(iterable):
for element in iterable:
if element:

return True
return False

New in version 2.5

Figure 3-1. An Example of Documentation Generated Using the Sphinx Python Documentation
Generator (Note Text Highlighting for Python Code and Search Feature). Screenshot Captured
From Python Documentation (Python Uses Sphinx) Website (Python Software Foundation, 2011c).

[Home Trees Indices Help epydoc3.0.1 |
Package epydoc = Module apidoc - Class Vari

type VariableDoc

source code

[hics private]
[fcames] | no frames]

APIDoc
docstring: string or None
docstring_lineno: int
other_docs: bool
metadata: (str, str, ParsedDocstring)
docs_extracted_by: str
__init__(self, **kwargs)
__setattr__(self, atir, val)
__repr__(self)

apidoc_links(self, l:‘fil ers)

extra_docstring,_fields

VariableDoc
name: str
is_imported: bool
is_instvar: bool
is_alias: bool
is_public: bool errides
defining_module
__init__(self, **kwargs)
__repr__(self)
apidoc_links(self, **fiiters)
is_detailed(self)

docstringparser, DocstringField

type_descr

markup.ParsedDoostring

%]
value canomcal,nany imported_from

ValueDoo | ‘ DottecName ‘

APT documentation information about a single Python variable.

Note: The ouly time a VariableDoc will have its own doestring is if that vasiable was created using an tatement, and that

statement had a docstring-comment r was followed by a pseudo-docstring.

Instance Methods Thide private]

init (self, **kwargs)
Construct a new APIDoc object.

source code
call graph

Figure 3-2. An Example of an Embedded and Interactive Class Diagram and Documentation
Generated Using Epydoc (Loper, 2011)

3-4

embedded interactive class diagram. However, enhancing the documentation requires learning
additional tools and text markup syntax and can increase documentation maintenance.

Note that xLPR-SIAM has used the Epydoc tool for generating its code application programming
interface documentation. xLPR-SIAM provides a Help menu item in its GUI interface that
accesses the system web browser to display HTML documentation generated with Epydoc and
included in the xLPR-SIAM distribution. An example of the Help menu item and the HTML
documentation is provided in Figure 3-3. The documentation provided includes a set of framed
windows with hyperlinks for viewing class and module hierarchies, docstring content, and
module source code. However, the docstrings are minimally populated, and therefore, the
information displayed in the Help browser is of limited value. Further, the authors have not
taken advantage of auto generation of class diagrams or use of markup text. xLPR-SIAM does
not make extensive use of the testdoc module.

A comment is made with respect to operating system compatibility of xXLPR-SIAM. Python and
the xLPR-SIAM dependencies were installed on a Linux machine, Debian 5 distribution. The
process to install the dependencies required several hours, due to the need for (i) finding and
downloading libraries, (ii) compiling and installing the dependencies, and (iii) compiling
FORTRAN codes to be invoked by Python using the f2py utility." Additional dependencies are
needed (e.g., Berkeley database and Python bindings) in the Linux installation. Python needs
to be uninstalled and compiled again after installation of the Berkeley database; otherwise,
Python database handling functions are not enabled. After a process that took several hours,
the SIAM GUI could not be made to work. However, xXLPR was launched from a Python
command line, using as input a database file generated in Microsoft® Windows®. The run was
successfully completed; however, it yielded different results than the Windows run. Some data
inputs were not properly read from the input database. For example, the Linux run recorded
fewer stochastic variables than the Windows run. It appears that xLPR-SIAM can be made to
run in Linux, but additional effort and debugging is needed. On the other hand, GoldSim is only
designed to work with Windows operating systems.

Recommendations

For both xLPR codes, the recommendation is to enhance the internal documentation. For
XLPR-GoldSim, it is recommended to enhance documentation by explaining the purpose of key
GoldSim model elements, and to use visual aids and text boxes to explain actions at the
container level (minimal, to the point documentation will be sufficient to facilitate the

learning effort).

For xXLPR-SIAM, it is recommended to enhance the documentation by consistently populating
docstrings, provide examples for the use of functions in these docstrings, and more thoroughly
utilize capabilities of available Python documentation tools for Python functions. An interactive
diagram of the class structure would also facilitate the learning effort.

! f2py is a FORTRAN to Python interface generator that comes with Python. FORTRAN code can be compiled using
f2py so to make FORTRAN code functions or subroutines executable from a Python command line or within Python
code.

3-5

3 SIAN-PEM PR
Project Setings Tools [Fln
a\) B @ Helpon SAM-PTM A

rzfect o SIAM-ILPR APL L
4 DAProfieMy Docur
r ° n Docs

3 COD.CHECKS

COD checks122 @ H:\pannmm!l\ﬂ.:uwmn;
Comparison Tobl o

ComparisonTabd B About Gt

Companson st AboutSAMPIM

Funsramonl Dussiaden O AR

Table of Contents

e [Modu

Modules

L Moedule Hierarchy
xlpr.srecontroller RealizatioasControllerModule: Cre
xlpr.srecontrollerxI PRController:)

r.srcmodel BaseMateriaPropertiesModule: ¢

Ipr.sremodel. CracksModull] k
xlpr.sremodel DependenceVariableMedule:

xlpr.sremodel MaterialPropertiesModale
Everything T

All Classes
0

xlpr.srcmodel xLPRVariableModule: Creare :7
xipr.sremodel xLPRV: :m:.le\[udnl» C

Figure 3-3. Example of Accessmg xLPR SIAM Documentatlon Generated Using Epydoc

3-6

4 FLEXIBILITY AND ADAPTABILITY FROM A MODEL
DEVELOPER PERSPECTIVE

The objective of this chapter is to evaluate the flexibility of the frames (GoldSim and SIAM) to
allow for code maintenance and code modifications. To explore the model source code and
structure in more detail, “dummy” modules were inserted in both versions of XLPR to perform
the same actions. The following outline defines the approach adopted to implement the
dummy module:

e Develop a FORTRAN procedure

— Compile the procedure into a DLL for use with GoldSim, or compile with the f2py utility’
for use in SIAM

— The procedure takes as input two random factors, r; and r;, used to modify the crack
depth and crack length

— The depth and length are provided as inputs to the procedure
o Define the parameters ry and r; as random

— Input these random parameters in the master spreadsheet in the case of GoldSim or in
one of the GUI input parameter tabs in SIAM

— Allow these random parameters to follow available distributions in xLPR (e.g., normal,
uniform, log distributions)

— Allow ry and r, to switch from aleatory uncertainty to epistemic uncertainty, and from one
distribution to another

e Apply the random factors, r; and r,, after the subroutine to compute crack growth
— Apply the factors to all active cracks
— Ensure that physical bounds (e.g., thickness or diameter) are not exceeded
e Track ry and r; in the set of appropriate random input parameters (epistemic or aleatory)

o Make sure these new input parameters are added to appropriate elements in GoldSim,
output files, or databases

Based on the incorporation of the dummy module, programmers were asked to evaluate the
convenience of tools available in the frame for the development of stochastic models. From the
CNWRA experience in development of performance assessment models to deal with
environmental problems and problems in radioactive waste management, it was deemed that a
flexible frame should include defined tools or functions to construct Monte Carlo models. For
example, a frame should include functions to (i) sample input parameters from distributions,

! f2py is a FORTRAN to Python interface generator that comes with Python. FORTRAN code can be compiled using
f2py so to make FORTRAN code functions or subroutines executable from a Python command line or within Python
code.

(i) record sampled values from multiple realizations, (iii) manage outputs from multiple
realizations, and (iv) create graphic display. The testing performed in this section was aimed at
evaluating the effectiveness of the frame functionality for the efficient deployment of stochastic
models. In developing stochastic models, a number of intermediate outputs are commonly
tracked to understand the flow of computations and their influence on the main outputs.
Therefore, an additional task was performed to evaluate (v) the effort needed to expose and
record an additional parameter output.

Programmers engaged in this task were asked to estimate the time needed to study GoldSim,
Python, and Python libraries, and to have enough knowledge to develop stochastic models or
perform model maintenance. The responses to this question varied. A programmer with
previous familiarity in GoldSim recorded that it took him 17 hours to get properly acquainted to
proceed with the dummy module exercise. Other programmers without any previous GoldSim
experience estimated it would take them up to 120 hours of GoldSim study to gain enough
knowledge for model development and model maintenance. For SIAM, a programmer with
previous familiarity with Python recorded that it took him 32 hours of preliminary study to gain
basic knowledge of SIAM before undertaking the dummy module exercise. Other programmers
without previous exposure to Python estimated a range from 80 to 180 hours to become
acquainted with Python and Python libraries to be able to understand SIAM’s source code.
Note that although the other programmers for both cases were not experienced in GoldSim or
Python, they were experienced engineers with programming backgrounds in FORTRAN.

To control the project scope and budget, programmers were given approximately 2 weeks to
work on the dummy module per frame. In general this time was not adequate to gain enough
knowledge on the frame and on the xLPR architecture to the enable programmers to implement
the module. Only the programmer with previous background in GoldSim and Python was able
to successfully implement the dummy modules within those time constraints.

The successful programmer recorded that it took 78 hours total to implement the dummy
module into xLPR-GoldSim. This total time included the effort to study GoldSim and FORTRAN
and become acquainted with the xLPR-GoldSim architecture. The initial review of background
material was spent mostly in learning FORTRAN basics and DLL interfacing. Additional time
was spent learning the flow of information and the computational sequence of the model. The
78 hours were approximately evenly spent reviewing background material, studying the model
to identify changes, and implementing changes.

The programmer recorded a total of 92 hours to implement the dummy module into xLPR-SIAM.
This time includes effort required to review programming languages and module dependencies
(e.g., Python, FORTRAN, PyQT), review the xXLPR-SIAM framework source code, and integrate
the dummy module into the framework. The programmer did not have background experience
in PyQT. The programmer spent most of the time studying PyQT, the model Python class
structures, and PyQT GUIs for data input and output. The computational sequence is fully
contained in the FORTRAN timeloop procedure, which is a relatively short code with intuitive
logic. Limited time was spent learning to compile a FORTRAN module into a Python object and
learning the FORTRAN variable encapsulation. When all necessary additions to the source
code were identified, actual implementation of changes in the code was straightforward and
took significantly less time than the time required to study the source code.

Table 4-1 presents the results of the evaluation of the frame elements to support development
of stochastic models.

"pJEpUE]S pue olews)sAs
apew aq ueo sanjeA pajdwes
10 Yoel} daay 0} ssao0.d ay |

‘sasAjeue AlAISUSS
10} paAau}al AjJualuaAuod
aq ued sanjea pajdwes

"sanjen pajdwes
O yoel} desy 0} UBIoIYNS S| Joye
[ewIUIW O 8p09 JO SBUl| M8}

‘uoljezijesl
Jejnoiued e Joj sanjea pajdwes
10 yoeu) deay| 0} 8|ge|ieAe ale
suol}ouUNy BWe) pue sjusWws|g

‘s|jage| Jesjo yum (suonezijeal

JUBJBYIP YIM PaJeIO0SSE SMOJ ‘siajaweled Juaiayip yum
palelnosse suwn|od) jewloy xujew ajdwis e si siajaweled
Alojes|e pue olwajside ay) bunoel sajiy Jndino ay}

JO 1BWIO) BY] 'S9|lj 1X8) [BUIBIXS Ul paplodal ale sisjeweled
pajdwes pue sjuejsuod jndu; "s}oslqo ssejo jo Jed se a|i
aseqejep 109(oid e 0} paplooal Ajjeonjewlo)ne ale sanjea induj
‘syybusns

XXNNN

‘sanbiuyoay
sisA[eue AJAllISUSS JBY)0 8sn pue SONSiie}S Uoe[a110d
aindwod Aladoud 0} papasu si Alojesje pue ojwa)side

ojul sisyeweded 1ndul ayy jo uoiesedas -sa|iy Al0jesje pue
olwaj)sida ojul sanjeA pajdwes 8)epljoSu0d 0} SPUNOJEYIOM
salinbaJ ainjoaliyole |apow 8y} ‘I9ABMOH "Sa|l} [BUJBIXS

ojul sanjeA indul psjdwes jo Buiodxa smojje wiSplo9-Hd1X

SuoneywI]

"WISp|oo ul o, Jo uo, pa|bboy Ajisea aq ued sajelea Jndul
lo} sanjeA pajdwes jo Buineg Joayspeaids |90XT HOSOIOIN
pa)ul| 8y} Ul paulejal aJe siojaweled Joj suoneooads Jndu|
SVITVENTS

MM NN

siajaweled ndu| pioday

"onewa)sAs
Spew a(g Ued d|geleA
pajdwes e ajeald 0} ssad04d ay |

"a|dwis s suonouNny UoNNQLISIP
a|ge|ieAe ay) usamiag Buiyoums

‘suoneindwod jJo aouanbas
3y} UIyIM pasn aq 0} 9|qIssaooe
Aisea ale sanjea pajdwes

"108[q0 8jeLieA ay) Buluyap Joy Xejuks 1081100

8l pue)jsiepun se ||om se ssejo pjopnadid 8y} ul 8ouejsul
Js)aweled ay) 1o} UoieoO| 86E.I0)S 8|qRINS BUIWIB}SP
1snw Jadojansp 8y "papoopley ale saweu Jaoweled
‘suonenwry

"9|qe|ieAe aJe sanjeA pajdwes 1o}

sjo|d pue ‘sa|i 60| ajeudoisdde ul payoes; aie senjeA ajelea
ay} ‘(aiqe(ieae snusw umop|ind U3 JO |[B YiM) |ND S} Ul qey
B Ul sweu a|geleA ay) Aejdsip Ajjeonewolne ued \VIS-dd1X
‘sSse|o ajelleA ay) Jo 103[qo ue se palejoap Si 9|geleA e
90UQ "9pO9 JO SauUll M3} Yyim paysiidwodde Ajoalip 8q pjnod
SYSE} JO Jaquinu e jey} 0s padojaAsp SEM SSEe|D d)eleA

‘papaau ale
anjeA ajeudoldde ayj 109]9s 0} 2160| pue SUOIIEIO| |BJBASS
ul sebueyd ‘Iejoweled o13seYO0]S Mau e ppe 0] “Jids
Aiojesje-olwalside ay} 10) JUNOOOE 0) siajaweled 21}Seyd0}s
JO sajeoldnp salinbad 81njoa}iyole WISPIo9-Hd1X Ul
‘SUONEHWI]

"JUSWIS|S 1}SBYO0)S
B uiyym ajqejiene ase sadAy uonnquisip jo AaLiea able)
v "seibajesis Buidwes SH pue wopuel SIayo _WISp|o

‘syjbuans :syibuans
"01)Seyo0]s se o ,
pauyep Ajises aq ueo sajqelep : \{/ \{/ {/ \{, / {/ ,\{ (\{, \{/
, siajoweled jnduj sjdweg
uopjejoadxy | NVIS-ddIX | wispIoD-ddIX

S|9POI\ 213SeY203}S Jo Juawdojanaq ay} 10} Sjuawia|g aweldd Jo uonenjeAs 'L-y a|qel

4-3

"olewalsAs

apew ag ued suonouny
olydeub [j|eo 0y sseooud ay |
‘ejep jo Aejdsip oiydeub ay) 4o}
a|ge|ieAe Ajipeal ale suonoun

"onewalsAs

apew aq ued Ae(dsip oiydelb

10} ejep ajqeus 0} yoeoudde ay}
pue ‘Ae|dsip oiydeub 1o} a|qejiene
BJED 9)EW 0} JUBIDIYNS 8lE 8p0d
10 saull ma4 “pisemiofiybiesss si
Bumold 1o} a|ge|ieAe eyep Bupep

‘(sda)s 8say) Jo uoIssSnIsIp Jalq e Joy Aljus snoinaud sy}
99s) pajuawaldwi ale indjno uonezijeas-s|diynw Buipiodal
J0} sdajs ay} 92u0 ‘syndino paplodal By} Joj pa|qeud
Alleonewolne si Ayjeuonouny bujold ay) ‘seuas awi 8y} Jo4
sybuans

XYNXNE

‘sdays Ma} ypim pappe aqg Ued pue WiSp|o)
ul a|gejieAe Ajaaizeu aJe Aejdsip oiydelb Joj suonoung
syibuans

AN NN

sindinQ opae) ajuol jo Aejdsiqg jesiydels 10j 1043

"ejep pJooal
0} pepasu S| 8p02 PAZILIO}SND
[eWIUIW JO BP0 PaZIWOISND ON

‘oljewoa)sAs

apew aq ueo yoeoidde

8y} pue ‘ejep pJodal 0} JUBIOIYNS
ale sabueyd [ewiuiw JO 3P0

10 saul| ma4 “psemiofiybiests si
ndino sjeipawlsiul ue Buiploday

‘(8w Jo uonouny

e se Jndino xujew “a°1) olweuAp
J0 21je}s Jayle ‘uonezijesal

Jad syndino xujew (1) pue ‘(swn
10 uonjouNy B se Juswade|dsip
Buiuado yoelo “6-9) uonezijeal
Jad syndino oiweuAp (i)

‘g|dwexa ajnpow Awwnp ay} buisn
papaau sabueyd sjiejep O xipuaddy "ejep ay} uodxa 0} 8pod
901n0S 8y} Ul papaau ale sabueyd jounsip ‘pasodxa si indino

yoiym uo Buipuadeq -doojowil NvH1HO4 9y} 0} sabueys
paz|Wwo}snd pue apod UOYIKd paziwolsnd pasu sdays sawos
"(NOILY1D3dX3 pue SHIWHOASNVYYH.L siosseooid-jsod
ayj Joyj ndul se ol 1xa) pappe Amau ayy Bulepap ‘dooj
aw NYY1LY04 ay; buidwooal ‘sAeute Buleosp 69)
sdajs a|diinw salinbal uonezijeals Jad (syndino
anjeA-a|buls Jo sauas aw) sindino ajeipawlalul [BUOHIPpE
ainydeo 03 sa|l 18} JO uoneal) ‘sl 1x8) Juspuadapul
ajeald 0] Alessagau si) ‘salias awly Indino Jo yoely

daay 0] -9pod ay} ul Ajjeussul pabeuew jou si suoiezijeal
a|diyinw wouy Indino ay| "papod piey ase sdaysawi |

‘1ndino uonezieal-sdiynw Jo yoeu} deay o) palinbal ate sdays
ma4 juswabeuew ejep swiopad Ajjeonewolne wisp|o

‘uonezijeal Jad (ainjiey Jo ‘Suoneyuwry ESNVENTS
awn ““6°8) syndino anjea-a|buis (1) o ,
B ¥ x AN XX
10 S|00) sepnjoul swel) 8y | / \ \ \ \
suolpezijeay a|diiny wouy 3ndinQ abeuey
uopejoadxy | WVIS-¥dIX | wispIo9D-yd1X

(panunuo)) s|apoN 213seY203S Jo Jusawdojaaag ay) 10} SJUSWS|T dweld JO uoljen|eAs |-y ajqel

4-4

‘sjndino paxyoeuy

aAOWBl/apIY 0] palianal Ajises
8q ueo syndino sjeipawiBUI
MoeJ) 0} sseooud ay |

‘pwoys si indino asodxayyoel)
0] papaau awly Buipoo ay |

‘Aejdsip oiydeub pue Buissaosoid

-1sod Joj pajoeljxe o 0} o|qe|iene

sI Jndino pasodxa/payoel |

‘onews)sAs apew aq ueod Jndino
asodxapoel} 0} yoeouadde ay |

‘'sjndino

‘Alowaw ul eyep Alessaoauun yoeJy [is Aew

pue 8p0o92 82JN0S 8y} Ues|D A[|n} JOU Op SJNDUOYS ‘JaAamoy
‘(days 15| Se a|i} indino ay) Bunealo pioae “68) paydope aq
ueo sjnouoys 'sdass Jo Jaquinu awes ay} saainbal syndino
a)eipawua)ul Jo Bupjoel) aAowal/aplY 0} SSa204d 8sIanal ay |

uawa|dwi 03 awi} Jueoylubis alinbal

10U pIp pue psemiojybiens alem apod 82IN0Ss HJ1X dy}

0] SUOIEOIIPOW Papasau ay} Jey} pajou Si)| “8pod 82In0S 8y}
0] suoieOIPOW pue SuonlIppe 1o} suoneoo| BulAyuspi Juads
sem ‘g|dwexs ue se g|npow Awwnp ay} Buisn ‘poys ay)

Jo fjuolew ay| (D xipuaddy aas) uoyihAd 0} 9|qissadde aq
0} 8|} doo| Wi NvHLHOH 8y} jo Buljidwooal pue ‘doojawi
NVHLHO4 8y} ul shesse Buleoap ‘sedepajul/ssweu

a1} wodxa Bujuap Buipnioul sajl} 8p0O2 82IN0S

a|dijnw ui suonippe saiinbai (bumold pue) Buissaooid-}sod
J0} 1ndino Jajeweled Buisodx3 -syndino sjeipawisiul 8sodxa
0] palinbai ale sdajs jJuaiayip ‘indino ay) uo Buipuadag

‘o|dwexa ajnpow

Awwnp a8y} jJo siseq 8y} uo ndino [euoiippe asodxs 0} 8pod
yd1X 8y 0} papasu sabueyd uo sjielap sapiroid 9 xipuaddy
‘sabueyd Juaws|dwi 0} (uonesyipow auo-Ag-auo asinbai Aew
1ey) sjuswald jo Jaquinu able| ay) uaaib) aosuaned pue |is
salinbai wigpjo9 ‘sinopoys Bujwwelboud jo abejuenpe ae)
01 Ajijiqissod pajiwi] yum ‘sjuawisfd WISpP|oo) Jo slaquinu ab.e)
Bunendiuew juads si JuswdojaAap ay) JO yonw ‘wiSp|os

u|] "sdooj pue Buixapul Buisn pawuwelboud Ajasiouod

Qg ued syse} aaladal ‘ebenbue| Buiwwelboid [euonipes;

B U] "JUSWAa|d WISP|09) yoes 1o} pajsnipe Ajlenuew aq jsnw
sbunjes awos ‘peopiom ay) aonpal 0} paweual pue palidod
aq ueo sjuawale Jo sdnoub ybnoyyy -suswse jo Jequinu
abue| e jJo uonippe ayj alinbas Aew Aejdsip/liodxa Jusnbasgns
Jo} eyep ay) Buisodxs ‘ejep (10}08A) [euoISUSWIPIINW JOH
‘suoneywry

"SJUBLWB|d BAIXd JO

[eAowal ay) Buneyjioey ‘suoieoo| Jisy) pue ssiouspuadap
Buissiw Jo Jasn 8y} sulem pue [spoul 8y} S)08yo

WISpPIoD ‘Buiuunl siojeg "SjusWS|® PESO[OUS PUE SIBUIBJUOD
JO [BAOWIBI [N} JO} MOJ|E S|opoW WISPIoD) “sjuswale Buippe
uey) Jaises sI sjuswale Bulnowal ‘|essusb u| “piemiopybiens
S| syndino s)eIpawWwIBUl 8A0WSI/EPIY O) SS800.1d 8sIansl 8y |

‘[opow 3004 8y}

0] ndino ajeipawlaiul 8y} ssed 0} papasu ale sda)s Bljxe Ma}
B ‘|apowgns WISP|09) B UIY}IM paxyoed) s }saJajul jo Indino
ajelpawuajul 8y} 4| (Induoys pieoqysep e pue ‘|apow ay}
ojul Juawala |ealydelb e Buippe “6°8) sindino ajeipawisiul
Bunsixa jo yoel deay 0] palinbai ale sdals [ewlul|p

pasodxayoed) 0} JuUsIDIYNS -suohenwr ‘sybuans
aJe 9po2 JO saul| M8y Y ‘Indino ,
Bunsixe jo Bunjoes) ajqeus Lo Y N T M M N 4
0} Juaiolyns ale sdajs may TN ST o
sindinQ |euonippy ploday/esodx3 o] 1oy3
uopejoadxy | NVIS-ddIX | wispIoD-ddIX

(panunuo)) s|apoN 213seY203S Jo Jusawdojaaag ay) 10} SJUSWS|T dweld JO uoljen|eAs |-y ajqel

4-5

Discussion and Recommendations

XLPR-GoldSim offers advantages to incorporate code updates and perform code maintenance.
The time needed to become familiar with GoldSim is shorter, modifications can be focused, and
modifications can be developed and tested independently from the main model. The
unit-sensitive approach and active error checking (syntax and variable names) available in
GoldSim minimize errors while programming. On the other hand, GoldSim requires skill and
patience. As the number of elements in a model grows and interconnections develop,
modifications need to be implemented element by element and the process can become
cumbersome. This was experienced in XLPR-GoldSim while adding a new stochastic
parameter as part of the dummy module insertion experiment. XxLPR-SIAM requires familiarity
with object-oriented programming to understand the code logic, as well as with Python,
FORTRAN, and Python libraries. Systematic approaches were sought in SIAM (i.e.,
approaches that could be repeated to implement common actions during model development or
maintenance, and to avoid the need of customized coding), and systematic approaches were
found to define stochastic input parameters, data management of input parameters, and graphic
display of input parameters. On the other hand, general systematic approaches for
management of data output from multiple realizations appear difficult to define. The approach
to capture/manage multiple-realization output data from a dummy module required changes to
Python and FORTRAN codes. The changes needed would be different depending on which
data and data structure (e.g., single valued, timestep series, static or timestep-dependent
arrays) are to be captured. Given the need of customized coding, a higher level of expertise is
needed to provide support to the xLPR-SIAM. One of the benefits of the xXLPR-SIAM code is
that once the required change was identified in the example of the insertion of a dummy
module, a few lines of code spread among several modules sufficed to perform a broad set of
functions (e.g., create output text files, enable text files for TRANSFORMERS and
EXPECTATION, and enable the results from post-processing for graphic display, with all the
graphic display options available). In contrast, in xXLPR-GoldSim, every action needs to be
manually implemented.

Recommendations
XLRP-GoldSim

The shortcomings noted in Table 4-1 for xLPR-GoldSim are mostly shortcomings of the
GoldSim software. Those shortcomings can only be addressed by the GoldSim developers. No
further recommendations are provided, other than enhancing the internal documentation, as
explained in Chapter 3.

XLPR-SIAM

. Develop generic functions or approaches (i.e., systematic steps) to perform data
management from multiple-realization outputs. Define standard data structures and data
text formats for different kinds of outputs: singe value outputs per realization, time series
per realization, data arrays, and data arrays that are functions of time per realization. The
purpose of the standard functions and data formats would be to minimize the need for a
customized code to perform routine actions, such as exporting output data in text files or
tracking intermediate output data in databases.

. Write tutorials for programmers. NRC expressed interest in actively contributing to the
code development effort; tutorials would facilitate this effort. These tutorials should cover

4-6

procedures to (i) insert a new random variable, (ii) pass sampled values as input to a
computational module, (iii) capture outputs in text files from multiple realizations, and
(iv) define standard output file formats for various types of multiple-realization outputs
(single value outputs per realization, time series per realization, data arrays, and data
arrays that are functions of time per realization). Appendix C describes steps taken to
implement the dummy module, which could be used as an example for developing a
tutorial. Tutorials could help reduce time requirements for learning Python and other
libraries used in the framework.

Develop a list of optional intermediate outputs to be exported in text files. Use flags in the
GUI to enable export of these intermediate outputs.

At some point during the development of XLPR-SIAM, outputs were tracked in a database
that could be queried using Python. It appears that such an approach was abandoned in
favor of external text output files. It is recommended to reconsider maintaining a
database, possibly tracking more intermediate outputs than in the text files. In this
manner, the database could be queried within Python to access more data for further
analysis or post-processing. A GUI could be developed with flags to enable/disable
tracking of intermediate outputs in the database. If additional data are needed, Python
functions could be developed to get data from the database and make text files.
Alternatively, those data could be analyzed and plotted using Python, without the need for
intermediate text files. Itis envisioned that Python scripts could be developed by users
and shared among users to perform particular analyses or get particular graphic displays
or data post-processing. For example, Python post-processing scripts can be developed
to perform the same functions as the TRANSFORMERS and EXPECTATION programs,
or to parse, filter, and plot particular data.

Design a strategy to allow for user-defined default input values for the deterministic cases.

Consider developing a statistical toolbox to compute correlations between single-value
inputs and single-value outputs per realization, accounting for the aleatory-epistemic
realization split. Allow sorting of the correlation coefficients by magnitude to identify the
parameters with strongest correlation. Consider correlations among “raw” data and
rank-transformed data.

5 FUTURE DEVELOPMENT POTENTIAL

The objective of this section is to comment on the potential of the frames and the availability

of special functions for future development. The following aspects were considered:

(i) preprocessing (e.g., specialized sampling, importance sampling), (ii) post-processing

(e.g., statistics, sensitivity analyses, computations to account for leak detection and mitigation),
(iii) optimization and parameter estimation, (iv) parallel and distributed processing, (v) multiparty
code development, and (vi) availability of third-party modules. The last two points were
considered because NRC staff expressed interest in actively contributing to code development,
as well as opening code development to people in the industry. Similarly to previous sections,

the findings are presented in the form of a table,

Table 5-1, but no star rating grade was used.

Table 5-1. Comparison of Frame Features To Support Future Development

XxLPR-GoldSim

XLPR-SIAM

Preprocessing (e.g., Specialized Sampling, Importance Sampling)

Pre-processing can be accomplished. The
XLPR-GoldSim developers demonstrated this concept
by incorporating the Discrete Probability Distributions
(DPD) module for stochastic parameter sampling via
DLL elements.

Pre-processing modules can be developed in Python or
with an interface in C/C++ or FORTRAN and linked to the
code. Pre-processing modules can be incorporated in a
seamless manner with the option for interaction with a
GUL.

Postprocessing (e.g., Statistics, Sensitivity Analyses,
and Mitigation)

Computations To Account for Leak Detection

Once GoldSim® completes a run, there is no access to
the internally stored data for further computations,
except by specialized functions offered by GoldSim
(e.g., computation of statistics of multirealization data,
computation of correlations matrices of inputs and
outputs). To address this limitation, external programs
(TRANSFORMERS and EXPECTATION) were
developed in the xLPR project to post-process data.
Post-processed data cannot be brought back into the
same GoldSim model to take advantage of

plotting capabilities.

Post-processing modules can be developed in Python or
with an interface in C/C++ or FORTRAN and linked to the
code in a seamless manner, as was done for
TRANSFORMERS and EXPECTATION. Inputs for post-
processing input can be specified from a custom GUI
interface. Results from post-processing can be
graphically displayed within the frame.

Optimization and Parameter Estimation

GoldSim has an internal tool for optimization. In the
optimization tool, stochastic input parameters are
adjusted to optimize an objective function. This
optimization tool can be used for parameter estimation.
GoldSim also includes a tool for sensitivity analysis to
sweep the value of an input parameter across a range,
while keeping others constant.

Of interest to the project is adopting adaptive sampling
strategies to sample infrequent failure modes and
automatically adjusting weight factors to expedite
convergence of statistics. It is envisioned that
approaches where the output of the previous
realizations is used as input to define the input
parameters for the next realization following an
optimization algorithm can be implemented with the use
of DLLs. The only envisioned limitation is that
execution of external optimization algorithms may be
limited to the nonparallel run mode.

Adoption of sampling strategies where the output of
previous realizations is used to define the inputs for the
next realization (e.g., optimization for parameter
estimation, adaptive sampling) could require changes to
framework architecture, which would potentially require
significant development effort.

External software is readily available for optimization and
parameter estimation (e.g., Parameter Estimation, Inc.,
2011). Significant changes would be needed to allow for
XLPR computations to interface with such

external software.

5-1

Table 5-1. Comparison of Frame Features to Support Future Development (Continued)

XLPR-GoldSim | XxLPR-SIAM

Parallel and Distributed Processing

GoldSim already has embedded capabilities for parallel | There is flexibility for implementation of various parallel

processing. Minimal changes are required to take processing methodologies and technologies [e.g.,
advantage of parallel processing, except when DLLs Message Passing Interface (2011), Bulk Synchronous
with special requirements are used. The code Parallel (Hill, et al., 1998), cloud computing]. There are

reviewers ran multiple realizations of xXLPR-GoldSim in several third party modules available that support object
parallel mode using four processors in a computer (see | sharing and parallelization of Python-based code [e.g.,
Chapter 2). Parallel Python (Vanovschi, 2011), Pyros

(de Jone, 2011)].

Parallel runs cannot be made using the GoldSim
Player. GoldSim Pro allows spanning realizations in up | Making SIAM parallel will likely require significant

to four computer processors. The GoldSim Distributed development effort. It is recommended to implement
Processing Module Plus allows for use of an unlimited changes to SIAM to enable parallel processing while
number of computer processors. The license to development of xLPR is still in early stages.

operate the Plus module must be purchased separately.

Multiparty Code Development

Limited capability is available in GoldSim for tracking There are established methods for tracking changes to
changes to a model. The GoldSim version tracking Python source code, and there are several robust,
function is limited to listing, in a text file, model open-source packages available for use [e.g., Mercurial
elements affected by changes, without further details on | (Mackall, 2011), SubVersion (Apache Software

those changes. There is no capability to revert Foundation, 2011), CVS (Free Software Foundation, Inc.,
individual changes. 2011), git (git, 2011), Bazaar (Canonical Ltd, 2011)].
Because the model file is a proprietary format, external | Changes to source code can be tracked by each

version tracking systems are not available. However, individual change, and developers can revert to past
alternative effective approaches and protocols can be states using code versioning tracking software. No major
implemented. For example, file servers including limitation is envisioned for multiparty development.

intermediate model files can keep copies of most recent
model files for download and upload after model
changes. A custodian is needed for this approach to be
effective. No major limitation is envisioned for
multiparty code development.

Availability of Third-Party Modules

Third-party modules could potentially be incorporated There are many third-party modules available for a wide
through the use of external DLL elements. Third-party variety of applications (e.g., sampling, parallel processing,
modules that cannot be translated into a DLL cannot be | plotting, generation of documentation) developed for use
used directly in GoldSim. with Python. Python libraries and modules are, in
general, open source.

No limitations are envisioned with respect to the use of
third party modules designed for use with Python.

Apache Software Foundation. “Apache™ Subversion®.” <http://subversion.apache.org/> Forest Hill, Maryland: The
Apache Software Foundation. 2011.

Canonical Ltd. “Bazaar.” <http://bazaar.canonical.com/en/> London, United Kingdom: Canonical Ltd. 2011.
Free Software Foundation, Inc. “CVS—Concurrent Versions System.” <http://www.nongnu.org/cvs/#development>
Boston, Massachusetts: Free Software Foundation, Inc. 2011.

git. “The Fast Version Control System.” <http://git-scm.com/> 2011.

Hill, J., B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsantilas, and R. Bisseling. “Parallel
Computing.” BSPIib: The BSP Programming Library. Vol. 24. pp. 1,947-1,980. 1998.

de Jone, I. “Pyro—Python Remote Objects.” <http://www.xs4all.nl/~irmen/pyro3/> 2011.

Mackall, M. “Mercurial.” <http://mercurial.selenic.com/> 2011.

Message Passing Interface. “MPI Documents.” <http://www.mpi-forum.org/docs/docs.html> 2011.

Parameter Estimation, Inc. “PEST—Parameter Estimation for Any Model.” <http://www.parameter-
estimation.com/html/pest.html> Sandy, Utah: Parameter Estimation, Inc., a Division of Scientific Software

Group. 2011.

Vanovschi, V. “Parallel Python.” <http://www.parallelpython.com/> 2011.

5-2

Recommendations

For xXLPR-GoldSim, the main perceived limitation for future development is the lack of access to
data stored in a GoldSim model file after run completion to allow for further analysis of the data
without leaving the GoldSim frame. To overcome this limitation, GoldSim developers would
have to enable additional functionality to open a window to manipulate archived data in the
model files. It is unclear how difficult and expensive it would be for GoldSim developers to
enable this functionality.

For xXLPR-SIAM, it is recommended to implement changes to SIAM to take advantage of
existing Python parallel processing capabilities. Such changes should take place early in

the development of xXLPR. Consideration should be given to changing the code architecture to
allow for the use of external optimization software to drive the xLPR computations.

6 CONCLUSIONS

In general, xXLPR-GoldSim and xLPR-SIAM have different limitations and strengths in regard to
future development potential. xLPR-GoldSim is built upon GoldSim, which offers major
strengths with respect to prompt model deployment, polished interfaces, graphic display,
management of Monte Carlo data, the limited background needed to read GoldSim model files,
and the quick learning time for model developers. GoldSim is a frame with numerous
predefined functions that can be used in a “plug-play” approach. When specialized functions or
approaches are needed, workarounds are possible to adapt existing GoldSim functions to
perform different tasks. However, these workarounds, in general, compromise model clarity by
the use of complex logic. Also, as GoldSim models grow in complexity, modifications can
become cumbersome because adjustments need to be manually implemented in the fields of
the GoldSim elements, element by element. In the comparison tables for Chapters 2 to 5, a
number of limitations of xXLPR-GoldSim were noted. However, the majority of those limitations
are intrinsic to the GoldSim software. In other words, these limitations cannot be addressed by
changing the xLPR-GoldSim model, but by changes in the GoldSim software. A major limitation
of the GoldSim software, noted in Chapter 5, is that once GoldSim completes a run, only limited
tools are available to perform computations on data stored in a model file. This limitation was
overcome in the xLPR project by manual exporting of data stored in GoldSim model files. This
process was inefficient; as indicated in Table 2.2, the export process can take a few hours. An
alternative data export process could be explored by using DLLs to capture data and write
realization data in external files after each realization is completed. To analyze the exported
data, analytical and plotting software other than GoldSim is needed. These are likely limitations
that the xLPR project will encounter when additional models for failure of other components of
the piping cooling system are developed using GoldSim. Chances are high that separate
models would have to be programmed, each generating “raw data,” and external tools or
software would have to be used to analyze the GoldSim raw data to define a total system metric
of risk. The process for a total system analysis is envisioned to be complex, and possibly only
experts would be able to perform such total system analyses. Summarizing, models developed
in GoldSim can be quickly deployed, are readable, and require moderate effort to initiate model
maintenance. On the limiting side, developers must deal with GoldSim software constraints with
workarounds as the model grows in size and complexity, the requirement for external tools to
analyze the data seems unavoidable, and data exporting can be a potential bottleneck.

XLPR-SIAM is built upon SIAM-PFM. The SIAM platform is intended to include tools for
probabilistic risk assessment and to be extensible to address different problems. Accordingly,
the reviewers evaluated SIAM for functionality that they considered should be included in a
frame used for the development of stochastic models. Functionality was sought for (i) sampling
input parameters from distribution functions, (ii) managing input data from multiple realizations,
(iii) managing output data (e.g., single value per realization, time series per realization,
multivalue per realization, or multivalue per timestep), and (iv) plotting capabilities for inputs and
outputs. To offer the intended frame adaptability, such functionality should be available in a
systematic manner, so that by adapting blocks of code with minor changes (thus minimizing the
need to write new, customized, code), the functionality could be applied to different inputs and
outputs, and, of course, be available for the development of varied models. In Chapter 4,
XLPR-SIAM scored high in areas (i) and (ii). It was found that systematic code, applied in the
same or similar manner, can be used to perform the functions (i) and (ii). Using the dummy
module described in Chapter 4, it was found that few lines of code sufficed to (1) create a new
parameter in an input tab in the xLPR-SIAM GUI with all of the pulldown choices, (2) create text
log files, and (3) enable graphic displays of probability density or cumulative probability plots. It
is remarkable the number of actions that can be accomplished with a few lines of code, thanks

6-1

to the xLPR-SIAM design. However, xXLPR-SIAM did not score high in task (iii). Using the
dummy module from Chapter 4, it was found that changes were needed in several Python files
and a FORTRAN code and in compilation of the FORTRAN code to capture a time series from
multiple realizations in a text file. Based on the Chapter 4 evaluation, it is extrapolated that
different code changes are needed to export data, depending on which data are to be exported.
Given the need for code customization, a deep level of expertise in Python and FORTRAN is
required to properly maintain a model, and an even deeper level of expertise is needed for
model development. It is recommended in Chapter 4 to define standard data interfaces and
standard data management functions applicable in a systematic manner to capture multiple
realization data in text files or databases. It is also recommended to write tutorials for model
developers. These standard functions and tutorials would help modelers to focus on the
development computational algorithms representing physical processes. Modelers would use
as-needed, predefined functions from SIAM libraries to build stochastic models. To make SIAM
accessible to a range of programmers learning would focus on the library functions and, to a
limited extent, Python. Currently, to implement a model following the xXLPR-SIAM example,
extensive knowledge of object-oriented programming, Python, FORTRAN, and Python libraries
is needed. With respect to the aspect (iv), plotting capabilities, a mixed score was determined
in Chapter 4 for xLPR-SIAM. A well-structured systematic approach was identified for plotting
data output from the post-processing script EXPECTATION. In general, only few extra lines of
source code were needed, after capturing a time series in an external text file, to enable the
corresponding data to be available in pulldown menus in the SIAM GUI for the plots of outputs.
The identified shortcomings under (iv) are related to the lack of options to control the
appearance of plots and the lack of plots for single-value outputs for realization. Thus, effort is
needed to develop the back end of the SIAM frame (i.e., data management of multiple
realization outputs, and plotting of outputs) to make it a general frame for the construction of
stochastic models, accessible to a range of programmers with diverse experience. In

Chapter 5, it was recommended for SIAM to incorporate existing technologies for parallel
processing, especially during early development of xLPR. In contrast to xXLPR-GoldSim, all of
the limitations pointed out in Chapters 2—5 for xLPR-SIAM can be addressed with extra coding
effort. SIAM offers potential for scalability and development of an integrated unit for a total
system risk analysis of piping cooling systems.

Thus, two future options are envisioned for xLPR. GoldSim offers convenience at the cost of
workarounds and the need for external tools. SIAM offers flexibility, scalability potential, and the
possibility to develop integrated units for total risk assessments; however, extra investment is
needed to build the frame to make it accessible to a range of programmers (from NRC and the
industry). To enhance the contrast of these two alternatives, the cost of use of GoldSim or
SIAM for NRC staff within the next 5 years was estimated. The unit of “cost” selected was the
time of use. A longer time would be associated with a frame that is more expensive to be used.
A time estimate, as opposed to a dollar quantity, was preferred, because such information can
be inferred more directly from the evaluation in Chapters 2 to 5. However, when a translation of
money into time was needed, a conversion of $250/hour was used.

The following assumptions were adopted to estimate the time of use.

Assumption 1: SIAM is polished to allow programmers within the NRC staff to use it.
Assumption 2: Every year, a module for failure of the cooling piping system is implemented.
Assumption 3: Every year, one NRC staff member is trained on the use of the frame to

ensure continuity (account for rotations and transfers).

6-2

Assumption 4: To translate time into money, the following equivalence was
used: 1 hour = $250.

Assumption 1, SIAM is further developed, is adopted for consistency with the expressed interest
of NRC staff to actively participate in model development. As discussed in Chapter 4, to make
SIAM accessible to a broader range of programmers, further development is recommended. If
this development is not adopted, then time estimates for the use of the SIAM frame would have
to be revised, as the time needed to attain enough familiarity would greatly increase.
Assumption 2, one module per year, conveys the point that xXLPR is intended to move beyond
the pilot problem study. Assumption 3, more staff are trained every year, is adopted to account
for the possibility that NRC staff may go into rotation or be transferred to other divisions, and it
would be safer to spread the responsibility for model development among various members of
the NRC staff to ensure continuity and as a knowledge management strategy. Assumption 4,

1 hour = $250, was set to translate money into time for a few factors that incur direct costs
(e.g., cost of GoldSim licenses, cost of training by the GoldSim Technology Group LLC).

Time estimates were elicited from staff working on Chapters 2 to 5. The evaluators were asked
to estimate the minimum and maximum time to undertake a task. To account for uncertainty, it
was assumed that the actual task time could be any time between the minimum and maximum,
and follow a uniform distribution. Thus, the average time, u, and variance, o?, were computed
according to the equations

u=0.5(a+b) (6-1)
o2 ==ar 1_23) (6-2)

where a and b are the minimum and maximum time estimates. Time estimates for tasks for the
use of GoldSim and SIAM are summarized in Tables 6-1, 6-2, and 6-3.

Tables 6-1 and 6-2 summarize estimates of the time it would take the NRC staff to use the
GoldSim and SIAM frames. In the case of GoldSim (Table 6-1), it was assumed that GoldSim
Technology Group LLC would provide yearly training. It was also assumed that NRC staff
would use three GoldSim licenses to perform analyses and model development, and that staff
would pay for GoldSim license maintenance fees to have access to recent versions of GoldSim.
A conversion of $250/hour was used to translate dollars into hours. In the case of SIAM

(Table 6-2), the fact that SIAM libraries and dependencies are open source (i.e., are available at
no monetary cost) was accounted for. The main difference in Tables 6-1 and 6-2 is in the time
needed to launch runs and obtain data to perform analyses. For example, in the case of
GoldSim, it was considered that it could take up to 6 hours per run (modeler time, not runtime)
for a modeler to set the run, organize the data, and execute post-processing to derive
meaningful results. In the case of SIAM, it was considered that it could take a maximum of

1 hour, assuming the SIAM frame is developed to a mature state. On average, using
information in the Totals row in Tables 6-1 and 6-2, it is concluded that NRC staff would spend
less time using the SIAM frame, assuming SIAM is developed to a more mature state.

In computing the totals in the last row in Tables 6-1 and 6-2 some costs were assumed to be
incurred only once in a 5-year period (e.g., GoldSim licenses are purchased only once;
post-processing scripts to analyze GoldSim data are programmed only in the first year). These
tasks are labeled with the phrase “one-time cost” in Tables 6-1 and 6-2. All other tasks not

86'G2Z | 92°¢66'2S | 0v'€e6'y | asq JeaA-g Buung swi] |ejo)
s|ejol
000 000 v'ily v'ly v'.ly }S00 dWl}-eUQ "9sudd|| Jad 0G6'E$ SOSUBDI| WISPIOD €
000 000 z6l z6l z6l . . 95Ul 13d 009'L§
paulejulew ale sasuadl| 92y} awnssy ‘(JeaA Jad) a9} soueUSUIEW OSUSIIT
}S09) asuadl
9 ¥¢€ 00°002°L 00l 091 oy suolsIaA pajelbiws Jo bunse |
) . a|geuoseal s| Loyo
yove 00°00¢' 001 091 g 11 Aluo—sauelq| buioddns pue oWISPIOD JO SUOISIOA JoMaU _on“ SOp0oo ngm_&m_
(1ea 7 19d) @oUBUdUIRY 3P0
6L9% €EEEL'T 0cl 00¢ oy '}SO0 dwil}-8UQ "suofje|a.io0d aindwod o} sduos [euonippe dojeaag
. . "1S00 awn-auQ ‘(suoneindwod wiopad O} |00} [eUI)Xd JB}0 10
6179y eeeel ¢ oct 00¢ 0¥ ‘20X ‘qeneN ‘eonewsayiely asn “6-9) elep azAjeue 03 s1duos jeuonippe dojaaag
€1'/G geeee's ovlL ove ovy (1eak Jad) JeaA e ul suonnoaxa uni Oy ‘sasAjeue wiopad 0} ejep uielqo
asn apoIn
60°¢C £e'ees 08 0cl)4 9oeBjUI 1@ pUe ‘sdiseq NVY.LY04 ‘WiISp|oD Buluies| Jewwelboid geys OHN
000 000 05 05 05 (000°¢$) sasuadxa
[oABL} + 00G‘0L$:Bulutesy Aep-1 1oy 977 dnougy ABojouydsa] wigpoo BuliH
(1eap 1ad) Burulea)
SG'LL ceeeh orl 091 0cl [®pow 8y) 81ndaxa 0] uoliejuswinoo(
. et ainjew ale
€L°LS geeeee 00€ 00y 00¢ swiyyioBje jeanewayjew Bulwnsse ‘awed) Ojul [9pOW Mau Jo uonejuswaldw|
(1eap 194) waysAg Buijoon Buidid Jo Jusauodwo Jo ainjie 10} |9pOIN MaN Jo Juawdojanaq

(say) (z1u) (say) (say) (say) ssel

To S aouelep ueap Xep uIN

3e1s DN Aq asn wisp|o9 Joj awilL ay} jo djewnys3 ‘-9 d|qeL

6-4

00’162 | 06'666'29 | 00°009'% | as() JeaA-G Buling awi] [ejol
s|ejo|
000 000 00 0 0 asua9l| Jad 150D
000 000 00 0 0 99} 8doUBUB)UIBW BSUBIIT
}S09 9suadI
€808 €€°6€5°9 081 0¢¢ ov suoisian pajelblwse Jo bunsa |
. et a|qeuoseal Sl Loy
rove 00°00¢ | 00} 091 Ug JI Aluo—sauelq Buipoddns pue uoyiAd JO SUOISIBA Jomau 0] Sapo9 ajelbiwg
(1ea 7 19d) @oUBUdUIRY 3P0
000 000 00 0 0 suoleja11o09 ayndwod o0} s3duios jeuonippe dojeasq
000 000 00 0 0 ejep azAjeue 0} s1duos [euonippe dojaaaqg
112G £e'¢ee (0% [0]4 0z Jeak e ul suoinoaxa unJ Oy ‘sesAjeue wiopad 0} elep uielqo
(1eap 49d) 9sn apoo
1882 ee'ees o€l 08l 08 sauelq)| uoykd pue ‘Nvy L1404 ‘uoyihd uo Jewwelboid yeys QYN bulures |
ga'Ll €eeel 09 08 014 S|opouw 21}seyo0)s Jo JuswdolaAap 10} swely VIS JO 8Sn uo Jejs OYN buluies|
(1eap 1ad) Burulea)
60°'€C €e'eesg ocl 091 08 [9pOW 8y} 8)N08Xa 0} UoIBIUBWNI0(Q
. cmaat ainjew ale
€LLS eeeeee 00€ 00¥ 00¢ swuyjuob|e |eonewsayjew Buiwnsse ‘dwed) 0jul [9pow Mau Jo uoiejuswajdul|
(1eap 194) waysAg Buijoon Buidid Jo Jusauodwo Jo ainjie 10} |9pOIN MaN Jo Juawdojanaq

(say) (z1u) (say) (say) (say) ssel

*A3Q 'S aoueLIeA ues|y Xe uiin

Je1s DN Aq asn VIS 104 awlL 8y} jo 2jewnnsy ‘z-9 d|qeL

6-5

¥G8'vLE

2T'eEL'66

00°09t'9

Z'9 9|qeL woJj sjejo | Buipnjou] awi] [e3ol

60061

zeeeL’oe

00°098°L

awi] juswdojanaq |ejoL

S|ejol

8€'C6

€€'€eS'8

00¥

099

(1) 74

‘G ‘¢ ‘¢ s19ydey) ul suoljepuswiwiodal

993 'S|ND Y}IM 99BHaIUl 0} MOY UO sajdwiexs apInold 'suonouny uopezisjeled
JO @SN 1Ud)SISU0D 3y} Jo} sjelioin] dojeaa@ “(ewny snsiaa Indino ‘4gD ‘4dad “6-9)
sindino pue syndui uonezijeal-ajdinw Jo Aejdsip oiydelb (1) pue ‘(syndino
XLjew ‘sauas awl ‘enjea ajbuis “-6-8) syndino uonezijeas-sidiinw Buibeuew (11)
‘siajoweled indul onseyools buippe (1) 1o} sjeloiny dojaasq “sjoalqo uoyihd

ul sBuIso0p JO BSN JUBISISUOD AQ UOIIEJUBWINDOP [BUJBIUI 8oUBYUT *(S|opoW
Jayyo dojanap 0] swed) NVIS 8y} Jo siasn) siewwelboud 4oy \VIS Juswnoogd

6l°9v

€EEELC

091

()74

08

‘g Jaydeyd ul suonepusLLILIOdal 885 "S|00) UolewWISse Jajaweled
Jo uoneziwndo [eulaixe ajge|ieAe Ajlpeal Jo asn ay ajelljioe) 01 VIS AUPO

8269

00008t

00¢

0ce

08

"t J8)deyD Ul SUOEPUSLIWIOIa 898G 'SUOIIB[2I00

BJEp MEJ pue SUOl1e|ali0d Yuel Jepisuo) ‘sasAjeue AjAnisuss poddns o) anjea
uone|aliod Ag sieleweled Log ‘(1jds uonezijes. Alojes|e-olws)side Bullepisuoo)
sindino anjea-s|Buis pue sindul anjea-s|Buls usamiag suole|a.iod andwon

€808

£€°€€G9

ove

08v

00¢

‘G Jeydey) Ul suonepusLIWOIal 89S “HYd1X 9zI|9|eled

Y9'v€

00°002°L

00l

091

o

"z Jaydey) ul suonepusLIWOdal 89S "S8njeA uesw Jo sjuenb e je
paxI} Sa|qelieA 21)SeYo0]s Jo sindul paulep-1asn Yjim sund OSIUILLIS}Sp 10} MO|Y

61°9%

€eeeL’e

)44

0ce

091

'z J9ydey)
Ul suonepuswiwooal 993 *(sjo|d Jie}-asioy ‘uonezijeal Jad syndino anjea-a|buls Jo
s10/d ‘suondo Bumojd Jo j01ju09 Jasn Joj moje ¢'6°3) sanijigedes Bumold aoueyu]

¢6'€0l

008°0lL

0cy

009

1) 74

"t lo)deyD ul suonepuUSWIWO09d.
989G -onewalsAs pue piepue)s sindino o Juswabeuew ejep axen

(sau)
‘A8Q 'S

(z1u)

aoueLIeA

(say)
uespy

(say)
xep

(say)
Ul

ysel

swelq AVIS 3y} dzijeulq o] awl] jo sjewnysy ‘¢-9 a|qeL

6-6

including the “one-time cost” label are assumed performed every year. The total average and
variance in the last row in Tables 6-1 and 6-2, assumed that some tasks are performed once
and other tasks are performed every year in the 5-year period. The total mean and total
variance are the sums of the means and variances of the tasks performed in the 5-year period.

The time to develop SIAM to a mature state needs to be considered as does the need to obtain
total estimates for the cost of the SIAM frame. Table 6-3 provides estimates of the time needed
for SIAM developers to complete the frame. Recommendations provided in Chapters 2 to 5
were used in defining the entries in Table 6-3. The total mean time and total variance are
included in the last row in Table 6-3 (including totals from Table 6-2). When the SIAM
development time is taken into account, the total time associated with the use of the SIAM
frame exceeds the time associated with the use of the GoldSim frame by approximately

30 percent.

Figure 6-1 shows approximate probability distributions for the time associated with the use of
the GoldSim and SIAM frames in a 5-year period. For SIAM, the distributions include the
upgront development needed to complete the development of the frame. The distributions are
assumed to be normal (a reasonable assumption given the central limit theorem and the large
number of entries in the sum to compute total times), with means and standard deviations as in
the last rows in Tables 6-1 and 6-3.

Conclusion

It is concluded that use of the SIAM frame over a 5-year period would be more expensive than
use of the GoldSim frame, under a set of defined assumptions. On average, SIAM was
estimated to be approximately 30 percent more expensive. The estimated range of costs,
expressed in time, is presented in Figure 6.1. On the other hand, it is estimated that NRC staff
would spend less time using the SIAM frame (provided SIAM is developed to a more mature
state) than using the GoldSim frame. SIAM would be expected to be developed to a stage such
that models would automatically incorporate tools for post-processing, making the use of SIAM
more convenient. In contrast, significant user intervention is expected in GoldSim models to
analyze and interpret output data, unless GoldSim Technology Group LLC develops an
approach to access and manipulate data stored in model files that does not require exporting to
external text files (and addresses other limitations noted in Chapters 2 to 5).

Therefore, NRC staff may opt to spend more to sponsor the development and use of SIAM to
gain flexibility and convenience. Appropriate consideration should be given to the risk and cost
of software development (especially in the absence of a commercial entity committed to
long-term support and software maintenance) and frequent change in hardware, operating
systems, and third-party software.

NRC staff may opt to use GoldSim and save some resources, at the cost of more user
intervention, to execute models and analyze output data. NRC staff may request that GoldSim
Technology Group LLC enhance flexibility in model development and enhance access to data
stored in model files. It is unclear how difficult it would be for the GoldSim Technology Group
LLC to address the shortcomings noted in Chapters 2 to 5. Contact with GoldSim Technology
Group LLC is recommended to determine whether those shortcomings could be addressed in
future versions of GoldSim.

6-7

0.002
0.0018
0.0016
0.0014

N
[\
0.0012 [1\
S 0.001 [1\ /\
: [[\ [\
[|\
/ \

e S|AM

et G0|dSim

0.0008 / \
0.0006 / \
0.0004
0.0002 / \ \
4 NS N
4000 5000 6000 7000 8000
Cost Estimate of Frame Use in Hours (5-Year Period)
1 / .
0.9 /

08 / /
07 / /
0.6 /

o l / === SIAM |
0a / / e GoldSim
02 / /
01 / /
o _

4000 5000 6000 7000 8000

CDF

Cost Estimate of Frame Use in Hours (5-Year Period)

Figure 6-1. Time Estimates for the Cost of Using the GoldSim and SIAM Frames in a
5-Year Period, Expressed as Probability Distribution and Cumulative
Distribution Functions

6-8

7 REFERENCES

(Some open software does not have a publisher or specific author. In that case, the name of
the software and website is provided as reference.)

Adams, B.M., W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M. Gay, K. Haskell,

P.D. Hough, and L.P. Swiler. “DAKOTA, A Multilevel Parallel Object-Oriented Framework for
Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis,
Version 5.1 User's Manual.” SAND2010-2183. Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

Brandl, G. “Sphinx—Python Documentation Generator.” 2011. <http://sphinx.pocoo.org/>

GoldSim Technology Group LLC. “GoldSim, Version 10.11.” <www.GoldSim.com>
Issaquah, Washington: GoldSim Technology Group. 2011.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “SIAM-xLPR Version 1.0 Framework
Report.” ORNL/NRC/LTR-248. Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.

Loper, E. “Epydoc—Automatic API Documentation Generation for Python.” 2011.
<http://epydoc.sourceforge.net/>

Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinich. “Development, Analysis, and
Evaluation of a Commercial Software Framework for the Study of Extremely Low Probability
of Rupture (XLPR) Events at Nuclear Power Plants.” SAND2010-8480. Albuquerque,

New Mexico: Sandia National Laboratories. 2010.

NRC and EPRI. “xLPR Version 1.0 Report, Technical Basis and Pilot Study Problem Results.”
Washington, DC: NRC, Office of Nuclear Regulatory Research and Palo Alto, California:
EPRI. 2011.

Python Software Foundation. “pydoc—Documentation Generator and Online Help System.”
Python Programming Language—Official Website. 2011a. <http://docs.python.org/release/
2.6.6/library/pydoc.html?highlight=pydoc#module-pydoc>

Python Software Foundation. “doctest—Test interactive Python examples.” Python
Programming Language—Official Website. 2011b. <http://docs.python.org/release/2.6.6/
library/doctest.html?highlight=doctest#module-doctest>

Python Software Foundation. “Built-in Functions.” Python Programming Language—Official
Website. 2011c. <http://docs.python.org/release/2.6.6/library/functions.html>

Rathmann, U. “Qwt—Qt Widgets for Technical Applications.” 2011.
<http://qwt.sourceforge.net/>

Riverbank Computing Limited. “PyQt4.” <http://www.riverbankcomputing.co.uk/
software/pyqt/intro> Wimborne, Dorset, United Kingdom: Riverbank Computing Limited. 2011.

7-1

Swiler, L.P. and G.D. Wyss. “A User’s Guide to Sandia’s Latin Hypercube Sampling Software:
LHS Unix Library/Standalone Version.” SAND2004-2439. Albuquerque, New Mexico: Sandia
National Laboratories. 2004.

Vermeulen, G. “PyQwt Plots Data With Numerical Python and PyQt.” 2011.
<http://pyqwt.sourceforge.net/>

7-2

APPENDIX A

A1 SOFTWARE QUALITY ASSURANCE
A1 Background

10 CFR Part 50, Appendix B identifies a number of requirements applicable to software used in
safety-related applications. Criterion Il states, in part, that activities affecting quality must be
accomplished under suitably controlled conditions and that the quality assurance program shall
provide control over activities affecting the quality of the identified structures, systems, and
components, to an extent consistent with their importance to safety. Controlled conditions
include use of appropriate equipment, suitable environmental conditions for accomplishing the
activity, and assurance that all prerequisites have been satisfied. Criterion Il requires, in part,
that design control measures provide for verifying or checking the adequacy of the design.
Essentially, 10 CFR Part 50, Appendix B requires that software used in safety-related
applications must be controlled to an extent consistent with its importance to safety.

U.S. Nuclear Regulatory Commission (NRC) has endorsed industry guidance relating to quality
assurance in Regulatory Guide 1.28 (NRC, 2010) in ASME NQA—-1a—2009 Addenda
(ASME, 2009). NQA-1, Requirement 3, Section 401 states in part that

(a) “The computer program shall be verified to show that it produces
correct solutions for the encoded mathematical model within the
limits for each parameter employed,

(b) The encoded mathematical model shall be shown to produce a
valid solution to the physical problem associated with the
particular application.”

Further requirements are provided in NQA—-1, Subpart 2.7 for “the acquisition, development,
operation, maintenance, and retirement of software.” NQA—-1 Subpart 2.7 follows the common
software quality assurance industry approach of identifying formal quality assurance controls
associated with each of the software development life cycle phases: (i) design requirements
definition, (ii) design, (iii) implementation, (iv) test, and sometimes (v) installation. For the
software life cycle phases, requirements are identified for documentation, review, software
configuration management (CM), and problem reporting and resolution.

For software to be used in safety-related applications, the software quality assurance program
must establish and implement controls to an extent necessary to demonstrate that the computer
program produces correct solutions for the encoded mathematical model within the limits for
each parameter employed (generally described as software verification and validation) and the
encoded mathematical model produces a valid solution to the physical problem associated with
the particular application (generally described as model validation).

A2 SOFTWARE QUALITY ASSURANCE FOR EXTREMELY LOW
PROBABILITY OF RUPTURE

A2.1 Extremely Low Probability of Rupture Project Pilot Study
Quality Assurance

The approach to quality assurance during the extremely low probability of rupture (xLPR) pilot
study is described in (Sandia National Laboratories, 2009). The CM plan addresses the xLPR
program commitment to implement the four key principles of CM as follows:

. Configuration Identification: Identify and name each major piece of the model. In the
remainder of this plan, these major pieces of the model are referred to as configuration
items (Cls).

. Configuration Control: Control changes to the Cls.

. Status Accounting: Track the status of the Cls.

. Verification and Audit: Confirm that the previous three principles are being

implemented correctly.
The CM further describes the verification and audit as including

Model checking

Software qualification checking

Independent verification and validation

Model file set verification

Software verification checking of modules

Data verification (input values)

Model input independent verification and validation
Model output graphic/plot checking

The two program participants (Sandia National Laboratories and Oak Ridge National
Laboratory) developed and employed documented desktop instructions and standard forms and
templates (including checklists) that facilitated implementation of the CM plan. Desktop
instructions addressed

Programming practices

Model development CM

Model parameters

Model changes

Model documentation and checking
Model output plot preparation

The participants also employed the software tools Microsoft® SharePoint®
(Microsoft Corporation, 2010) and Mercurial (O’Sullivan, 2009) for CM and to facilitate
collaborative model and code development.

The pilot study quality assurance practices centered on CM and checking and did not attempt to
implement the full range of NQA—1, Subpart 2.7 software quality assurance requirements. The
focus on CM and checking is appropriate considering the prototyping nature of the pilot study
and the expectation of full scope, formal quality assurance controls in subsequent development
projects. In regard to model validation, the pilot study included preparation and execution of
several deterministic test problems.

A2.2 Software Quality Assurance for Future Extremely Low Probability
of Rupture Development

Preparation of software quality assurance plans addressing the full range of NQA-1, Subpart
2.7 requirements should be the first step in subsequent development of XLPR software.
Considering the complexity and uncertainties in the mathematical models employed in the xXLPR
software, the greatest challenge may be in defining model validation “to an extent consistent
with its importance to safety.” In the face of large uncertainties, an expert panel of peer
reviewers, such as described in NUREG-1297 (NRC, 1988) may provide additional confidence
for model validation. NUREG-1297 suggests that “a peer review should be used when the
adequacy of information (e.g., data, interpretations, test results, design assumptions, etc.) or the
suitability of procedures and methods essential to showing that the ... system meets or exceeds
performance requirements ... [that] cannot otherwise be established through testing, alternate
calculations, or reference to previously established standards and practices.” Alternatively, an
expert elicitation such as that described in NUREG-1563 (NRC, 1996) could be employed to
obtain expert judgments in a formal, highly structured approach that may provide greater
confidence in the model validation approach. Thorough documentation and reporting of peer
reviews and expert elicitations may be used in shareholder interactions to facilitate acceptance
of the xLPR model as a valid design verification tool.

Other considerations for model validation should include the following.

. Model development and validation should be integrated in the requirements definition life
cycle phase so that the mathematical model is as accurate as possible prior to starting
the software design phase.

. Model development and validation should consider all potential sources of uncertainty in
the physical system being represented and in the mathematical model.

. Stringent change controls should be applied if the mathematical model is refined after
the requirements definition life cycle phase to ensure that changed requirements are
properly implemented throughout.

o Validation testing should include comparison of model results with field data and
laboratory experiments whenever possible.

Considerations for other areas of software quality assurance should include the following.
o The xLPR Project Pilot Study followed several good practices that should be carried on

in future XLPR development, including use of documented desktop instructions and
forms and templates.

. CM tool selection for use in subsequent xXLPR development should be based on needs
for developing a finished software product, which can be much different from the needs
for prototype development.

A2.3 Summary

NQA-1, Subpart 2.7 provides appropriate software quality assurance requirements for future
XLPR software development. Robust model validation is an essential quality assurance element
for software intended for safety-related design analyses. Peer reviews and expert elicitations
supporting model validation activities can be used to develop the necessary confidence in the
XLPR mathematical models in their functions as producing valid solutions to the physical
problem associated with the particular application.

A3 EXTREMELY LOW PROBABILITY OF RUPTURE
MODEL VALIDATION

A3.1 Introduction

The purpose of model validation is to evaluate whether the deterministic, physical models coded
into the computer program xLPR accurately predict the physical behavior for which they are
intended. Two possible types of validation could be performed:

1. Experimental validation based on using measured full-scale (e.g., pipe) or small-scale
(e.g., laboratory coupon) test data. Although full-scale tests can be very costly, there are
frequently problems of transferring small-scale test data to validate physical models
applied to full-scale components.

2. Analytical validation based on using accepted analytical tools (e.g., finite element codes)
as accurate predictions of experimental behavior (e.g., displacement response of pipe to
applied loads) and physical quantities [e.g., crack tip driving forces such as the J-Integral
(J) and Crack Opening Displacement (COD)].

These two forms of validation testing are consistent with the quality assurance program
in Subsection A2.2 (i.e., testing should include comparison of model results with
laboratory experiments).

A3.2 Validation Topics

The following approaches would be used to validate modeling concepts and deterministic
methods used in a number of modules contained in the XLPR code. The approaches
presented in this section serve to provide a robust model validation, which, as discussed in
Subsection A2.2, is considered an essential part of the quality assurance program for software
intended for safety-related design analyses.

A3.21 Geometrical Modeling Issues: Representing a Surge Nozzle by a Pipe

Currently, xXLPR uses the General Electric/Electric Power Research Institute (GE/EPRI) method
for determining the necessary fracture parameters and the LBB.ENG2 method for elastic-plastic

A-4

fracture mechanics. For simplicity, these methods are based upon the geometry of a pipe. The
analytical equations are expressed in terms of various wall thicknesses and radii. However, it
would be useful to evaluate how well the current analytical models in XLPR based on relatively
simple pipe geometries compare with the behavior of the geometrically more complex

surge nozzles.

Therefore, validation would identify under what circumstances the approximate geometry
modeling used in XLPR is conservative or nonconservative. The validation would involve
comparing finite element results for various fracture parameters used in critical crack and
leak-before-break assessments using both cracked surge nozzle and pipe geometries.

Specific topics to be addressed in this validation are outlined next.
A3.2.2 Through-Wall Cracks

The validation exercise would involve using finite element analyses to calculate J and measure
COD and crack areas of through-wall cracks in dissimilar welds in a surge nozzle and a pipe
under bending, axial force, and internal pressure and comparing these results with xXLPR
LBB.ENG2 predictions. The validation would be performed using finite element analyses
because performing experiments could be problematic (e.g., the high cost of fabricating
full-scale surge nozzles including welding and technical difficulties such as the need to fabricate
sharp through-wall cracks).

A3.2.3 Surface Cracks

Currently, xXLPR employs semi-elliptical surface crack limit load solutions for cracks in pipes
based upon the work of Rahmann (1998). For generality, XLPR should be able to determine the
surface crack stability failure condition under conditions that could promote failures before the
limit load is reached. EPRI (2011) acknowledges this lack of generality and also states that an
elastic-plastic fracture-mechanics-based approach will be required. However, no specific
methodology for the elastic-plastic fracture mechanics calculations is currently proposed

(EPRI, 2011).

Therefore, for different types of surface cracks, plastic collapse loads would be determined
using finite element models of surge nozzles and pipes subjected to bending, axial force, and
pressure loads. The finite-element-derived plastic collapse loads would be compared to the
values predicted using the pipe solutions in XLPR to assess their accuracy.

A3.2.4 Load Modeling Issues: Representing Pressure Effects as an Axial Force

The xLPR code allows for the effects of internal pressure on fracture mechanics parameters by
applying an axial load equal to the axial load exerted by the pressure on the ends of a closed
pipe and the extra axial force that arises by the pressure acting on the faces of internal surface
cracks. This approach is adequate for calculating linear elastic fracture parameters for
circumferential cracks, but it has serious limitations for cracks under elastic-plastic and plastic
collapse conditions. The most serious limitation is that plastic yielding in pressurized pipes is
dominated by the hoop stress induced by the pressure, and the current approach in xXLPR
ignores this. (Of lesser concern is the effect of the moment produced by the pressure acting on
the crack faces.) Hoop stress may be important when the pressure is high or the pipe is subject
to high temperature, (e.g., this may lead to creep effects) (Kim, et al., 2002). Therefore, it is

A-5

considered important that the calculation of J and COD estimates for through-wall cracks
includes the internal pressure component (Kim, et al., 2002). The results of Lei and Budden
(2004) illustrate the important role the hoop stress plays on limit load predictions. Therefore, it
is important that the effects of the hoop stress arising from internal pressure on the
elastic-plastic fracture mechanics parameters xLPR employs (such as J, COD, and limit load
solutions) be determined for through-wall and surface cracks to assess potential
nonconservative elements in that code. This validation exercise can be efficiently accomplished
by combining the finite element investigation of geometrical modeling issues described in
Subsection A3.2.1 with a parallel finite element investigation of pressure effects. The finite
element models built as part of the Subsection A3.2.1 work can be utilized in the finite element
investigations described in this section.

A3.2.5 Material Modeling Issues: Representing Dissimilar Weld Stress-Strain
Behavior by the Ramberg-Osgood Equation

A3.2.5.1 Ramberg-Osgood Equation

An approach for performing simple J and COD estimation calculations is the well-known
GE/EPRI method. The GE/EPRI model is based on the Ramberg-Osgood material model in
which the coefficient and strain hardening index is used as input for representing the material’s
stress-strain behavior. However, there is a potential problem in using the Ramberg-Osgood
model and limiting J and COD analyses to this type of stress-strain behavior. Specifically, the
problem is the ability of the Ramberg-Osgood model to accurately capture the measured
stress-strain behavior (Brust, 1987; Gilles and Brust, 1991). Kim, et al. (2004),
Chattopadhyay (2006), and Huh, et al. (2006) discuss how the J estimates are sensitive to the
accuracy of data fitting using the Ramberg-Osgood model.

Currently, the xLPR developers do not appear to address uncertainties related to representing
stress-strain behavior by Ramberg-Osgood equations.

Therefore, it would be appropriate to validate the accuracy of xLPR results because they
depend on fitting Ramberg-Osgood stress-strain curves to the stress-strain data. Validation
would involve evaluating finite element predictions of key parameters (e.g., J, crack areas) using
actual measured stress-strain curves as input and comparing these results with the
corresponding predictions of XLPR. Finite element models built as part of the work performed in
Subsection A3.2.1 would be utilized in the finite element calculations outlined in this section.

A3.2.5.2 Dissimilar Welds

The current approach used in XLPR to assess cracked dissimilar welds is to use the
stress-strain behavior of the base metal and the fracture properties of the weld metal. Support
for this approach is cited based on comparison of predicted and experimentally measured
fracture behaviors. However, this justification is not substantiated through analysis of cracks in
the welds of surge nozzles. It is proposed that the issue of dissimilar metal welds [i.e., what is
the most appropriate stress-strain curve to use (the weld or base or a combination of the two)]
be investigated through finite element analysis of cracks in the welds of surge nozzles and
pipes. This activity would be performed in conjunction with the finite-element-based
investigations in Subsection A3.2.1.

A3.2.6 Crack Growth Rate Modeling Issues

The current crack growth rate model in XLPR is the MRP-115 model (EPRI, 2004). This model
is a function of temperature and the stress intensity factor (K). Investigation of primary water
stress corrosion cracking (PWSCC) crack growth is given in White, et al. (2008) and MRP-216
(EPRI, 2007), which include welding residual stresses. The methodology of White, et al. (2008)
and MRP-216 (EPRI, 2007) is based on the use of linear elastic fracture mechanics to calculate
K used in the MRP-115 model.

There are three issues related to crack growth rate modeling in xXLPR that are of concern. First,
as pointed out in EPRI (2011), there are limitations regarding the use of K (which is based on
linear elastic fracture mechanics) to characterize stress corrosion cracking (SCC) rates in
situations involving significant crack tip plasticity. The most important source of stress driving
SCC in surge nozzles is welding residual stresses. The presence of high residual stresses may
result in plasticity that could affect the validity of using the K for calculating crack growth rates
(EPRI, 2011). Second, if crack tip plasticity effects are important, then the question arises as to
what fracture mechanics parameter should be used to characterize SCC rates under these
conditions. Third, after initiating, SCCs are small. It is known that the propagation rates of
small cracks under cyclic loading conditions tend to be underpredicted by fatigue crack
propagation rates measured on coupons containing relatively long cracks when the rates are
characterized in terms of cyclic K. Although SCC occurs under static, as opposed to cyclic,
loading conditions, the possibility that observations regarding fatigue crack growth rates of small
cracks being larger than those of long cracks under similar crack tip loading conditions may also
carry over to SCC of small and long cracks and needs to be addressed.

A3.2.7 Crack Tip Plasticity

The use of K can result in an underestimation of SCC rates if this parameter is used to
characterize SCC rates when loading conditions cause significant crack tip plasticity. Under
these conditions, J is the more appropriate fracture mechanics parameter to use. Finite element
analysis of cracked surge nozzles in the presence of simulated welding residual stresses can be
performed to establish whether crack tip plasticity effects are important. Typical residual
stresses would be generated in the finite element models based on treating these stresses as
initial strains, similarly to how thermal stresses are represented by thermal strains resulting from
a temperature field. The through-wall residual stress variations presented in XLPR documents
would be used to guide the choice of residual stresses to be used in this activity.

Solutions for J would be computed for cracks in linear elastic and elastic-plastic materials under
similar loading conditions, and the results would be compared to assess the effects of plasticity
on the crack tip driving force. Because SCC models are nonlinear functions of K, the J values
can be converted to equivalent (plastically corrected) K values and computational simulations of
crack growth in welded surge nozzles would be performed to establish the influence of crack tip
plasticity on SCC lifetimes. Validation of the xXLPR approach of using K can be accomplished if
the difference in the two sets of predicted lifetimes (one set based on K and the other on a
plastically corrected K) is acceptably small. If the result of this validation is not acceptable,

then this activity could provide data to assist in modifying the linear elastic approach adopted

in XLPR.

A3.2.8 Characterization of Stress Corrosion Cracking Rates When K Is
Not Valid

If the results of the validation exercise performed in Subsection A3.2.7 demonstrate that K is not
the appropriate parameter to use for calculating growth rates for cracks in the welds of surge
nozzles due to the effects of high residual stresses, then it would be useful to experimentally
compare SCC rates under linear elastic conditions with rates measured under elastic-plastic
conditions to establish that J is the appropriate fracture parameter to characterize PWSCC
rates. These tests need not involve residual stresses, because the intent would be to establish
the principle that J (or an equivalent plastically corrected K) enables SCC rates to be
extrapolated from the linear elastic regime (where J is directly related to K?) into the
elastic-plastic regime. Substantiation of this extrapolation would validate the use of J as a
characterizing parameter for SCC.

A3.2.9 Small Cracks

Another important aspect of SCC crack growth is the effect of small cracks because any small
crack enhancements to the SCC rates based on measurements made on long cracks will make
XLPR predictions nonconservative.

One potential small crack problem is that when a crack is small, the crack tip plastic zone

may be of the same size as the crack, which would make linear elastic fracture mechanics
invalid (Miller, 1982; Smith, 1977; Anderson, 2005). This issue, the replacement of K by an
elastic-plastic fracture mechanics parameters such as J when crack tip plasticity is significant, is
similar to the validation issue addressed in Subsection A3.2.7 and would be resolved by the
work proposed in that section.

Another potential small crack problem is that under environmentally assisted cracking
conditions, small crack effects on growth rates may be occurring that are not related to crack tip
plasticity issues, such as possible changes between long crack and small crack growth behavior
due to differences in electrochemical reactions at the tips of these two kinds of cracks
(Anderson, 2005). To resolve this issue, small-scale coupon tests would be used to validate the
applicability of the PWSCC equations used in XLPR in the small crack regime. These tests
would be performed under loading conditions that induce crack tip driving forces that are typical
of the values likely to be encountered by small cracks in the welds of surge nozzles. The test
environment (temperature and water chemistry) would be similar to that experienced by small
cracks at surge nozzles.

A4 References

Anderson, T.L. Fracture Mechanics:. Fundamentals and Applications. Boca Raton, Florida:
CRC Press. 2005.

ASME. “Quality Assurance Requirements for Computer Software for Nuclear Facility
Applications.” ASME NQA-1a—2009 Addenda to ASME NQA-1-2008 Edition. New York City,
New York: American Society of Mechanical Engineers. 2009.

Brust, F.W. NUREG/CR-4853, BMI-2145, “Approximate Methods for Fracture Analysis of
Through-Wall Cracked Pipes.” Washington, DC: NRC, Office of Nuclear Regulatory Research.
1987.

A-8

Chattopadhyay, J. “Improved J and COD Estimation by GE/EPRI Method in Elastic to Fully
Plastic Transition Zone.” Engineering Fracture Mechanics. Vol. 73. pp. 1,959-1,979. 2006.

EPRI. “Materials Reliability Program: Models and Inputs Selected for Use in the xLPR Pilot
Study (MRP-302).” Palo Alto, California: EPRI. 2011.

EPRI. “Material Reliability Program: Advanced FEA Evaluation of Growth and Postulated
Circumferential PWSCC Flaws in Pressurizer Nozzle Dissimilar Metal Welds (MRP-216).”
Palo Alto, California: EPRI. 2007.

EPRI. “Materials Reliability Program: Crack Growth Rates for Evaluating Primary Water Stress
Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Welds (MRP-115).”
Palo Alto, California: EPRI. 2004.

Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory.” Nuclear
Engineering and Design. Vol. 127. pp. 1-17. 1991.

Huh, N.-S., Y.-J. Kim, and K.-B. Yoon. “Influence of Ramberg-Osgood Fitting on the
Determination of Plastic Displacement Rates in Creep Crack Growth Testing.” Fatigue and
Fracture of Engineering Materials and Structures. Vol. 30. pp. 277-286. 2006.

Kim, Y.-J., N.-S. Huh, Y.-J. Kim, Y.-H. Choi, and J.-S. Yang. “On Relevant Ramberg-Osgood
Fit to Engineering Nonlinear Fracture Mechanics Analysis.” Journal of Pressure Vessel
Technology. Vol. 126. pp. 277-283. 2004.

Kim, Y.-J., N.-S. Huh, and Y.-J. Kim. “Quantification of Pressure-Induced Hoop Stress Effect on
Fracture Analysis of Circumferential Through-Wall Cracked Pipes.” Engineering Fracture
Mechanics. Vol. 69. pp. 1,249-1,267. 2002.

Lei, Y. and P.J. Budden. “Limit Load Solutions for Thin-Walled Cylinders With Circumferential
Cracks Under Combined Internal Pressure, Axial Tension and Bending.” Journal of Strain
Analysis. Vol. 39. pp. 673-683. 2004.

Microsoft Corporation. “Microsoft® SharePoint®.” Redmond, Washington: Microsoft
Corporation. 2010.

Miller, K.J. “The Short Crack Problem.” Fatigue of Engineering Materials and Structures.
Vol. 5. pp. 223-232. 1982.

NRC. Regulatory Guide 1.28, Rev. 4, “Quality Assurance Program Requirements (Design and
Construction).” Washington, DC: NRC. 2010.

NRC. NUREG-1563, “Branch Technical Position on the Use of Expert Elicitation in the
High-Level Radioactive Waste Program.” Washington, DC: NRC. 1996.

NRC. NUREG-1297, “Peer Review for High-Level Nuclear Waste Repositories.”
Washington, DC: NRC. 1988.

O’Sullivan, B. “Mercurial: The Definitive Guide.” Sebastopol, California: O’Reilly Media, Inc.
June 2009.

Rahmann, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II:
Idealized Cracks and Closed-Form Solutions.” Engineering Fracture Mechanics. Vol. 61.
pp. 213-230. 1998.

Sandia National Laboratories. “XLPR Configuration Management Plan, RO.”
Albuquerque, New Mexico: Sandia National Laboratories. 2009.

Smith, R.A. “On the Short Crack Limitations of Fracture Mechanics.” International Journal of
Fracture. Vol. 13. pp. 717-720. 1977.

White, G., J. Broussard, J. Collin, M. Klug, C. Harrington, and G. DeBoo. “Advanced FEA
Modeling of PWSCC Crack Growth in PWR Dissimilar Metal Piping Butt Welds and Application
to the Industry Inspection and Mitigation Program.” Proceedings of the PVP2008 ASME
Pressure Vessels and Piping Division Conference, Chicago, lllinois, July 27-31, 2008.

Paper No. PVP2008-61616. New York City, New York: American Society of Mechanical
Engineers. 2008.

A-10

APPENDIX B

B1 VERIFICATION OF xLPR DETERMINISTIC MODULES
B1.1 Introduction

The purpose of this appendix is to present the verification results for the different deterministic
modules contained within the extremely low probability of rupture (XLPR) code.

This section presents a brief overview of the XLPR code structure, verification approach, and
testing platforms. Section B2 details the results of the verification testing performed on each
XLPR module. Finally, Section B3 will present a summary of findings and conclusions with
respect to the verification testing.

B1.1.1 The xLPR Code Structure

This section focuses on the modules that are called within the xXLPR time loop as shown in
Figure B—1 (Klasky, et al., 2010). As part of the xLPR probabilistic framework, the time loop is
contained within the epistemic and aleatory loops [refer to U.S. Nuclear Regulatory Commission
and Electric Power Research Institute (2011) for further details].

XLPR modules that were subjected to verification testing are listed in Table B—1. Note that the
only module contained within the XxLPR time loop that was not included in the verification testing
was the leakage rate module, SQUIRT_v1.1.f90. This module was not included, because it is
undergoing modifications by the xXLPR working group.

The input and output for each module listed in Table B—1 will be detailed in Section B2.
B1.1.2 Verification Approach

The approach taken for performing the verification was to (i) spot check the source code by
comparing the FORTRAN statements with the corresponding equations given in the appropriate
references and (ii) spot check intermediate and final calculation results using hand calculations,
spreadsheets, and third-party mathematics packages. In some cases, hand derivations were
used to verify some of the expressions coded into a module. For example, this approach was
used to verify the derivatives required for the Jacobian used in Newton’s method in the module
TWCFail_v2.1.f90.

Therefore, not all of the functionality was tested in each module. Numerical verification of a
module was performed using either external FORTRAN programs as drivers or dynamic linked
libraries (DLLs) driven by GoldSim® (GoldSim Technology Group LLC, 2010). For testing
purposes, some FORTRAN modules were modified to generate an output file to print
intermediate parameter values for verification of calculation results and execution sequence.

Verification of a module’s numerical output was performed using hand calculations, Microsoft®

Excel® (Microsoft Corporation, 2007) spreadsheets, or Mathematica™ (Wolfram Research
Inc., 2008).

B-1

XLPR Time Loop Flow Chart

Initialize all module input
arrays with data from Glossary

realization record. SC = Surface Crack

Determine initation times Check to see an inspection TWC = Through-Wall Crack
and/or mitigation will occur _ B
with or without mitigation, dufing thgis time step. If €OD =Crack-Opening displacement
placement of cracks, and total mitigation has occurred, apply LOCA = Loss-of-Coolant Accident
number of cracks that will mitigated weld residual stress.
initiate for this realization.

Initialization
Block

Crack Initiation
and Placement
Module

Loop over all active-cracks and
check criticality of SC and WC. Inspection Module:
Unstable SC transitions of WC. Loop over all active
Enter Unstable TWC fails the weld. 5Cs and calculate
Timeloop # POND and
Determine o isDetected?
Number of Criticality
Active Cracks Module

Determine if
Mitigation and/or Crack Typel 15C] o SCF Fail \JInol Inspection
nspection Tim 7N Critical? ! Module
rwc] [yes]
Loop over all active
Iyes] cracks and call ksurf Crack Growth c;rd Igabab;llr
e or ktwe before call Module Iyesl Awc Fail SCEhTWE on-Detaccion
to grower. Check for Critical? Injesten
transition to TWC
due to growth. [no]
COD Module: calculate

Check to see if any
cracks initiate for
this time step.

crack-opening
oD displacement for TWC
Module

Leakage Rate
Module: calculate
leak rate for TWC Record Time of
SC Detection

Place an

Initiate

Crack for this
Time Step

Loop over all active
cracks and check for
coalescence. Coalesced
cracks become inactive
and new combined
cracks are resized and
relocated.

Leakage Rate

rack Coalescence
Module (if new
crack initiated)

Record Time of
Leak Detection

Leak >
OCA Limit?,

Record

Failure Time

Exit
Time Loop

Continue

\ Timeloop /&
Figure B-1. xLPR Time Loop Flow Chart (Klasky, et al., 2010)

Table B-1. xLPR Modules

Module Name Module Function Description
crack_init_v2.1 Performs primary water stress corrosion cracking (PWSCC) crack initiation.
grower_v2.1 Calculates the PWSCC crack growth rate.

Coalescence_v2.2 | Combines the cracks that meet the coalesce criterion based on Section XI, Article IWA-3000 of the ASME
Boiler and Pressure Vessel code.*

kSurf_v1.1 Calculates the surface crack stress intensity, K, for a given crack size.

kTWC_v1.1 Calculates the K for a through-wall crack. Routine uses linear interpolation from tables of influence
functions.

SCFail_v2.1 Calculates the maximum bending moment for a surface crack under pressure and axial load.

TWCFail_v2.1 Calculates the critical crack size (leading to pipe failure) given a bending moment.

COD_v2.1 Calculates the crack opening displacement for a given crack size in a pipe under prescribed axial and

bending loads.

ISI_v2.1 Calculates the probability of not detecting a crack.

*ASME. “Boiler and Pressure Vessel Code.” Article IWA-3000, Section XI. Standard Examination Evaluation. New York City, New York: The
American Society of Mechanical Engineers. 2007.

B1.1.3 Testing Platforms

The verification testing was performed on personal computers running either the Microsoft
Windows® 7 or Windows XP operating system. The Lahey/Fujitsu FORTRAN 95 (Lahey
Computer Systems, 2004) compiler was used for compiling source code, building executables
(e.g., COD_V2.1in Table B—1), and building DLLs.

B-2

B2 xLPR MODULE VERIFICATION TESTING

This section details the verification testing for each of the xLPR modules that are listed in
Table B—1. In the sections that follow, individual tables list each module’s input and output
variables, references used for FORTRAN code verification, and results of the

verification testing.

B2.1 Verification of Crack Initiation, Growth, and Coalescence Modules

The software modules that were tested are listed in Table B-2. Input values and calculation
results from each module were checked against reference documents. This checking was
performed on a limited basis. The DLLs were modified to write input information and
intermediate calculation results to output files. The results from the calculations and the input
information were compared to the source documentation. The references used in this testing
for each module are also shown in Table B-2.

B2.1.1 Crack Initiation

The crack initiation module, crack_init_v2.1.f90, contains three separate internal models—two
labeled as direct models and one identified as a Weibull model. Each model was tested, and
observations from this testing are listed in Table B—3. For each model, the equations in the
code were compared to the equations in Harrington, et al. (2011) and the calculation results for
the module were compared to spreadsheet-calculated values. Each observation is classified in
terms of its effect on the documentation or the code.

Table B-2. xLPR Modules Included in Verification

Module Dynamic Link Library GoldSim Model File References
Crack Initiation, crack_init_v2.1.dlIx crack_init_test_cases_v2.1.gsm Harrington, et al.,
Version 2.1 2011*

Crack Growth, grower_DLL_v2.1.dlIx grower_v2.1_GS_file.gsm Harrington, et al.,
Version 2.1 2011*

Ahluwalia, 2007t
Crack Coalescence, Coalescense_DLLx_v2.2.dlIx GS_Framework_Coalescence_v2.2.gsm Harrington, et al.,
Version 2.2 2011*

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.
tAhluwalia, K. “Materials Reliability Program: Mitigation of PWSCC in Nickel-Base Alloys by Optimizing Hydrogen in the Primary Water
(MRP-213).” Product Identifier 1015288. Palo Alto, California: Electric Power Research Institute. 2007.

B-3

Table B-3. Crack Initiation Module Test Results

Model Observations Classification
Direct Model 1 None None
Direct Model 2 | There is a discrepancy between Eq. 3.32 and Figure 3.31 in Harrington, et al. Possible code error
(2011)* with regard to the QoverR term. The term is either + or — QoverR. Inconsistency in

documentation
The operator in the statement “if [(Stress/SigYS-z) eq. 0.0] then” should be .le. | Minor code error

Some round-off error in the calculation of “D” propagates to initiation time. Minor code error
Harrington, et al. (2011, Eqg. 3.30) shows 2/3, but the code uses a value
of 0.66.

Weibull Model None None

Overall Parameters in [Harrington, et al. (2011, Eq. 3.26, Direct Model 1; Eq. 3.32, Minor document
Direct Model 2; and Eq. 3.34, (Weibull Model)] do not match parameters in clarification

Harrington, et al. (2011, Table 3.14), so it is not clear where the equations are Minor code inconsistency
accurately implemented in the code. For example, the terms “(Tempr + 273)"
in the code need to be clarified for consistency with Harrington, et al. (2011).
In addition, similar calculations in the crack growth module use 273.15 instead
of 273. The code and documentation should be reviewed for consistency.

For Tempr, Harrington, et al. (2011, Table 3.14) specifies values greater than Minor code error
30 °C but the code checks for values less than 30 °C. It should instead check
for values less than or equal to 30 °C.

For the same temperature and stress input data, the three models produce Possible model
significantly different results. Therefore, the parameter values listed in development review
Harrington, et al. (2011, Table 3.14) may need to be reviewed. needed

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.

None of the observations listed in Table B-3 are expected to significantly change the module
calculation results. Therefore, minor code errors and minor document clarifications are listed in
this table. However, because each model produces significantly different results for the same
input stress and temperature values, the appropriateness of model parameters and validity of
these different models should be reviewed as discussed in Harrington, et al. (2011).

B2.1.2 Crack Growth

For the crack growth module, grower_DLL_v2.1.f90, the equations in the code were compared
to the equations in Harrington, et al. (2011) and intermediate and final calculation results were
compared to spreadsheet-calculated values. The equations in the code were compared to
Harrington, et al. (2011, Egs. 3.20 through 3.24). Additionally, Ahluwalia (2007) was used to
clarify the implementation of Harrington, et al. (2011, Eq. 3.21). From this comparison, one
error is identified in the code. Ahluwalia (2007) shows a sample calculation pertaining to
Harrington, et al. (2011, Eq. 3.21) that uses the base 10 logarithm (i.e., log1o) versus the natural
logarithm (i.e., In). The code, however, incorrectly implements Harrington, et al. (2011,

Eq. 3.21) by using the natural logarithm in the calculation. This calculation is for the difference
in electrochemical potential between the Ni/NiO transition and the electrochemical potential at
the current concentration of hydrogen (i.e., AECPyynio). This error changes the crack growth
rate significantly and therefore is classified as a major code error.

B2.1.3 Crack Coalescence

For the crack coalescence module, Coalescence DLLx v2.2.f90, the software control logic was
compared to the descriptions in Harrington, et al. (2011) for two test cases. One test case
involved the coalescence of two surface cracks, and the other involved the coalescence of
surface and through-wall cracks (TWC). In addition, the resulting (i.e., coalesced) crack location
and length were compared to spreadsheet-calculated values. For both test cases, the logic for
coalescing cracks agreed with descriptions in Harrington, et al. (2011) and the resulting values
for crack location and length agreed with spreadsheet-calculated values and the descriptions in
Harrington, et al. (2011).

B—4

B2.2 Verification of the Surface and Through-Wall-Crack Stress
Intensity Factor, Surface Crack Maximum Bending Moment, and
Through-Wall-Crack Critical Crack Size Modules

The xLPR modules that were validated are listed in Table B—4. The source code for each
module was compared with reference documents to verify consistency. Line-by-line code
inspection was performed for all the subroutines in the module. In most cases, mathematical
derivations were performed by hand to verify that the corresponding FORTRAN statements
agreed with the theory given in the appropriate references. Standalone programs for testing
each module were obtained from the Microsoft SharePoint® configuration management (CM)
directories. In all cases, the developer previously hardwired input values into the code.
Calculations were verified by using FORTRAN write statements to generate intermediate
calculations to a “debug” output file. This allowed validation of calculation sequence and
calculation correctness. The output was also compared to documented results provided in an
XLPR Model Document and Checking Desktop Guide provided for each module. These
documents were obtained from the SharePoint CM directories.

B2.2.1 Stress Intensity Factor for a Surface Crack

This module is part of the overall Crack Growth module. In particular, kSurf_v1.1.f90 calculates
the stress intensity factor for surface cracks. Within this module are calls to other subroutines,
which calculate the influence functions for a number of (c/a), (r/t), and (a/t) ratios, where c is the
crack half length, a is the crack depth, r is the pipe inner radius, and t is the wall thickness. On
the basis of the influence functions, the surface crack tip stress intensity at the deepest point,
surfk90, and the surface crack tip stress intensity at a surface point, surfkO, are calculated.

Table B-5 lists the inputs and outputs for kSurf_v1.1.f90.

Table B—4. xLPR Modules Included in Verification

Module Calculation Subroutine References

Stress intensity factor, kSurf_v1.1.f90 Excel® file “Surface Crack Anderson.xlsx™

surface crack WRC Bulletin 471 (Anderson, et al., 2002)1
ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx

Stress intensity factor, kTWC_v1.1.f90 Excel file “TWC Anderson.xIsm”™*

through-wall crack ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.docx

Bending moment for a SCFail_v2.1.f90 Rahman (1998)%

surface crack NUREG/CR *= 4853 (Burst, 1987)§
ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.docx

Critical crack size TWCFail_v2.1.f90 Rahman (1998)

(through-wall crack) Gilles and Brust (1991)

leading to pipe failure Brust and Gilles (1994)]
NUREG/CR * 4853 (Brust, 1987)§
ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.docx

*The listed Excel files were obtained from the SharePoint® site.

tAnderson, L., G. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry. “Development of Stress Intensity Factor Solutions for Surface
and Embedded Cracks in API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.

FRahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II: Idealized Cracks and Closed-Form Equations.”
Engineering Fracture Mechanics. Vol. 61. pp. 213-230. 1998.

§Brust, F.W. NUREG/CR—-4853, “Approximate Methods for Fracture Analysis Through-Wall Cracked Pipes.” Washington, DC: NRC.

pp. 2—13. 1987.

|| Gilles P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part |: Theory.” Nuclear Engineering and Design. Vol. 127.

pp. 1-17. 1991.

{[Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members Subjected to Combined Tensile and Bending Loads.”
Journal of Offshore Mechanics and Arctic Engineering. Vol. 116. pp. 221-227. 1994.

B-5

Table B-5. Inputs and Outputs for Stress Intensity Module: kSurf_v1.1.f90
Subroutine Inputs Outputs
Pipe inner radius, Ri Surfk90, surface crack tip stress intensity at deepest
Crack half-length, ¢ point
Crack depth, a
Wall thickness, t Surfk0, surface crack tip stress intensity at surface
kSurf_v1.1.f90 : - ;

- Membrane stress, sig0 point
Components of through-thickness stress, sig1-
sig4
Bending stress, sigd

The subroutine, calcK (called by kSurf), determines the surface crack stress intensity factor, K,
for a given crack size. Specifically, surfk90 is the crack tip stress intensity at the deepest point
and surfkO is the crack tip stress intensity at a surface point.

The calcK subroutine calls a number of other subroutines to calculate the appropriate influence
functions based upon the (c/a), (r/t), and (a/t) ratios. For an (a/c) ratio greater than 0.2 calcK
calls the subroutine calcG. For an (a/t) ratio less than 0.2, calcK calls the subroutines calcG
and calcGaovert0. Specifically, where (a/t) is less than 0.2, calcK calls subroutine calcG for an
(a/t) equal to 0.2 and calls the subroutine calcGaovertO for an (a/t) equal to 0. Subsequently,
linear interpolation (subroutine lininterp) is performed using the solutions at (a/t) equal to 0 and
(a/t) equal to 0.2 to determine the influence functions for the actual (a/t) ratio between 0 and 0.2.

For a specified (a/t) ratio, subroutine calcG calculates the influence functions for different (c/a)
and (r/t) ratios. The FORTRAN code for calcG is straightforward and consists of a series of
FORTRAN expressions used to calculate each influence function depending on the specific
(c/a) and (r/t) ratio. Each of these expressions was verified line-by-line by comparing with the
influence function coefficients given in the Excel file Surface Crack Anderson.xlIsx (obtained
from the SharePoint CM site) with those from the Influence Function Equations and Influence
Coefficients given in Anderson, et al. (2002). The coefficients in the code matched those in
the references.

The subroutine calcG determines influence functions for values of (c/a) between 1 and 32. If
the crack’s (c/a) ratio is larger than 32, then calcG calls the subroutine calcGinfinity, which
calculates the influence function for a given (r/t) and (a/t) ratio. All of the coding in this module
was compared with the corresponding expressions given in Anderson, et al. (2002), and the
code was verified to match the expressions.

A standalone version of kSurf_v1.1.f90 was obtained from the SharePoint CM site and used for
the numerical tests. The test procedure utilized FORTRAN write statements placed in
subroutines calcG, calcGaovert0, and calcGinfinity. All of the output was written to a debug file.
The output to this file allowed the calculation sequence to be verified for different (c/a), (r/t), and
(aft) ratios; the correct passing of arguments; and specific values of the influence functions. The
subroutine lininterp is the same as that called in the module KTWC_v1.1.f90 and will be
discussed in that section.

The numerical output values of selected FORTRAN expressions were evaluated using simple
hand calculations by substituting the numerical value of each variable into the FORTRAN
statement and verifying the result that was printed in the debug file. All numerical hand
calculations agreed with those printed in the debug file.

For the calculations that were spot checked, all of the calculations agreed with the
expected results as documented in the check file obtained from the SharePoint CM site:

B-6

ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx (Williams and Klasky,
2010a). This verification against the check file was done to confirm the code that was verified,
matched the documented check file results.

B2.2.2 Stress Intensity Factor for a Through-Wall Crack

This subroutine is part of the overall Crack Growth module. The module KTWC _v1.1.f90
calculates the stress intensity factor for a TWC by using linear interpolation from tables of
influence functions.

Table B-6 lists the inputs and outputs for KTWC_v1.1.f90.

The main routine KTWC calls subroutine calcTWCK, which is used for calculating the stress
intensity factor, K, for a TWC using linear interpolation from tables of influence functions.
Subroutine calcTWCK calls the subroutine calcGTWC to calculate the necessary coefficients
used in the influence functions for a TWC. In specific cases, this subroutine utilizes the
subroutine lininterp, which performs simple linear interpolation.

Table B—6. Inputs and Outputs for Stress Intensity Module: kTWC_v1.1.f90

Subroutine Inputs Outputs
kTWC_v1.1.f90 Pipe inner radius, Ri TWCK, through-wall crack tip stress intensity
Crack half-length, ¢
Pipe thickness, thick
Total axial stress, sig0
ID WRS from load module, sigo_wrs
Local bending stress at the crack, sigb

The purpose of these routines is to populate an array with the influence functions. The array
contains data for specific (Ri/thick) ratios. For a (Ri/thick) ratio other than that directly having
available data, simple linear interpolation is used to calculate influence function values for the
given (Ri/thick) ratio.

Subroutine calcGTWC basically uses data tables of influence functions to populate the
necessary arrays, which are used to calculate the influence function coefficients g0twc, g1twc,
and g5twc and are the output from calcGTWC. The routine calcTWCK uses the output of
calcGTWC to calculate the TWC tip stress intensity, TWCK.

Because the basic function of the routines is to perform a “look up” of data from tables, the
source code of all of the routines was checked by using line-by-line inspection. The verification
of the coding for the linear interpolation algorithm was compared to numerical algorithms

[e.g., those given in Press, et al. (1992).] The algorithm in the software is similar to other
algorithms involving a look up of data.

The influence function data were verified by comparing the data statements in calcGTWC with
the data given in the Excel file “TWC Anderson.xlsm,” which was obtained from the SharePoint
CM site. All of the data were verified to be consistent with “TWC Anderson.xlsm.”

A standalone version of kKTWC_v1.1.f90 was obtained from the SharePoint CM site and used for
the numerical tests. The test procedure utilized FORTRAN write statements placed primarily in
calcGTWC and lininterp. These write statements were used to output the values of specific
variables. All of the output was written to a debug file, which allowed the calculation sequence
to be verified, as well as the passing of arguments. The FORTRAN write statements were
placed at specific locations to print out components of the array a(...,...,...,...,) to verify that the

B-7

correct data were being copied from the declared FORTRAN data statement. The passing of
data and the calculation sequence were both verified to be correct. In addition, a value of
(Ri/thick), variable name rovert in the code, was chosen such that the routine lininterp was used.
The routine lininterp is a straightforward implementation of linear interpolation and was verified
to be calculating the interpolated value correctly.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the stress intensity factor documented in the check file
obtained from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0_SIAM_kTWC_v1.1.docx (Williams and Klasky, 2010b). This verification against the
check file was done to confirm that the code matched the documented checkfile results.

B2.2.3 Maximum Bending Moment for a Surface Crack

The module SCFail_v2.1.f90 calculates the maximum bending moment for a surface crack
subject to pressure and axial loads.

Table B-7 lists the inputs and outputs for SCFail_v2.1.f90.

The main routine SC_Fail calls two other subroutines. The subroutine BM_CD_NSC
determines the maximum moment for a constant depth surface crack based on Net Section
Collapse (NSC). This subroutine considers two cases: (i) the entire crack in the tension zone
and (ii) part of the crack in the compression zone. For case (ii), there are checks to determine
whether or not there is crack closure. As given in Rahman (1998), because the crack has a
constant depth, closed-form solutions are available to calculate the stress-inversion angle, B,
and the NSC moment. There are no calls to other functions within this subroutine.

The subroutine BM_SESC_NSC determines the maximum moment for a semi-elliptical surface
crack based on NSC. This subroutine utilizes the solutions given in Rahman (1998). This
subroutine also considers two cases: (i) the entire crack in the tension zone and (ii) part of the
crack in the compression zone. For case (ii), there are checks to determine whether or not
there is crack closure.

For case (i) where the entire crack is in the tension zone, Rahman (1998) provides closed-form
solutions for the stress-inversion angle, 8, and the NSC moment. In support of these
calculations, calls are made to the functions FN_GAMMA and FN_SUM1_SESC NSC. The
implementation of the FN_GAMMA function was checked with NUREG/CR—4853 (Burst, 1987)
and verified to be correct. The implementation of function FN_SUM1_SESC_NSC was checked
with Rahman (1998) and verified to be correct.

However, for case (ii), closed-form solutions do not exist. As given in Rahman (1998), the value
for B must be determined numerically. The function FN_FIND_BETA uses Newton’s Method to
find a solution for B. The maijority of the terms in this function were checked directly with
Rahman (1998) and verified to be correct. A single derivative was verified by simple hand
derivation. The subroutine BM_SESC_NSC also uses the function FN_SUM2_SESC_NSC.
During code verification it was noted that the source code stated the code had been changed to
reflect an error given in Rahman (1998). This error correction was also documented in
Harrington, et al. (2011).

B-8

Table B-7. Inputs and Outputs for Net Section Collapse Module: SCFail_v2.1.f90

Subroutine Inputs Outputs
SCFail_v2.1.f90 Pipe outer radius, R_o BM_Ratio, bending moment ratio
Crack depth, depth
Pipe wall thickness, thick
Half-crack length, theta
Pipe yield stress, sigy
Pipe ultimate stress, sigu
Applied bending moment, BM
Pipe internal pressure, pressure
Applied axial force, F_ax
SC analysis method:
=0, constant depth surface crack
=1, semi-elliptical surface crack

A standalone version of SCFail_v2.1.f90 was obtained from the SharePoint CM site and used
for the numerical tests. The test procedure utilized FORTRAN write statements placed
throughout all of the subroutines and functions used in SCFail_v2.1. These write statements
were used to output the values of specific variables. All of the output was written to a debug file,
allowing the calculation sequence and the passing of arguments to be verified. The passing of
data and the calculation sequence were both verified to be correct. The values of selected
FORTRAN expressions were evaluated using hand calculations by substituting the numerical
value of each variable and verifying the result. For the functions FN_SUM1_SESC_NSC,
FN_SUM2_SESC_NSC, and FN_FIND_BETA, by examining the debug file, the numerical
iterations were verified to converge within the specified tolerance.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the maximum bending moment documented in the check
file obtained from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0_SIAM_SCFail_v2.1.docx (Williams, 2010a). This verification against the checkfile was
done to confirm that the code matched the documented checkfile results.

B2.2.4 Critical Crack Size for a Through-Wall Crack

The module TWCFail_v2.1.f90 calculates the critical crack size leading to pipe failure for a
specified bending moment.

Table B-8 lists the inputs and outputs for TWCFail_v2.1.f90.

The main routine TWC _fail determines whether a TWC will fail under an applied load. The
TWC_fail routine calls two subroutines: THETA_CD_NSC and ENG2_mp.

B-9

Table B-8. Inputs and Outputs for Critical Crack Size Module: TWCFail_v2.1.f90

Subroutine Inputs Outputs
TWCFail_v2.1.f90 Pipe outer radius, R_o Theta_r, a
measure of
Pipe wall thickness, thick closeness to failure
Half crack length, theta in terms of critical
- - - crack size
Pipe yield stress, sigy
Pipe ultimate stress, sigu If_flag, failure and
failure mode

Ramberg-Osgood coefficient, RO_alpha
Ramberg-Osgood reference stress, RO_sigo

indication flag

Ramberg-Osgood reference strain, RO_epso
Ramberg-Osgood exponent, RO_n

Pipe material initiation J-resistance, Resist_Jic
Pipe material J-resistance coefficient, Resist_C

Pipe material initiation J-resistance exponent, Resist_m
Applied bending moment, BM

Pipe internal pressure, pressure
Applied axial force, F_ax

The subroutine THETA_CD_NSC determines the critical crack size for a constant depth TWC
using NSC assumptions. The equations used in this subroutine are based upon the theory
given in Rahman (1998) in which closed-form solutions are given for NSC. Rahman (1998,
Egs. 12 and 13) was used to determine the critical crack length, 28. Based upon the form of
Rahman (1998, Egs. 12 and 13), an iterative solution using Newton’s Method is necessary to
solve for 8. All of the FORTRAN expressions used in subroutine THETA_CD_NSC were
checked directly with Rahman (1998) and verified to be correct. A single derivative necessary
for Newton’s Method was verified by hand derivation. There are no calls to other subroutines or
functions within THETA_CD_NSC.

The subroutine ENG2_mp determines the equilibrium crack angle for a TWC for a pipe
subjected to internal pressure and bending moment. This calculation uses the LBB.ENG2
method (Brust and Gilles, 1994), which is based on elastic plastic fracture mechanics (EPFM).
ENG2_mp calls a number of other subroutines and functions in support of the EPFM
calculations. The calculations performed in the subroutine ENG2_mp are based upon a
J-estimation scheme technique. This method is detailed in Gilles and Brust (1991), Brust and
Gilles (1994), and NUREG/CR-4853 (Brust, 1987). All of the FORTRAN expressions used in
subroutine ENG2_mp were checked directly with these references and were verified to be
correct. However, note in the FORTRAN source code there are comments pointing out errors in
the referenced equations that have been corrected in the source code for the subroutines
ENG2_mp and CalcJ_Stuff, and in the functions FN_It21b2, FN_dIt2Ib2_dtheta, FN_
dit2Ib2_dtheta2, FN_Itlb, FN_dltlb_dtheta, FN_d2ItIb_dtheta2, FN_dFtFb_dtheta, and
FN_d2FtFb_dtheta2. These corrections were verified based upon documentation given in
Harrington, et al. (2011).

A standalone version of TWCFail_v2.1.f90 was obtained from the SharePoint CM site and used
for the numerical tests. The test procedure utilized FORTRAN write statements placed
throughout all of the subroutines and functions used in TWCFail_v2.1. These write statements
were used to output the values of specific variables. All of the output was written to a debug file,
which allowed the calculation sequence and the passing of arguments to be verified. The
passing of data and the calculation sequence were also verified to be correct. The values of

B-10

selected FORTRAN expressions were evaluated by simple hand calculations by substituting the
numerical value of each variable and verifying the result.

e For the subroutine THETA_CD_NSC, for the calculations that were spot checked, all of the
calculations agreed with the expected results. The Newton Method iteration loop was
checked by printing intermediate values. The numerical iterations were verified to converge
within the specified tolerance and terminate correctly.

¢ Intermediate calculations were spot checked for the subroutine ENG2_mp, and all output
values agreed with the expected results. One Newton iteration loop was checked by
verifying convergence.

e ENG2_mp calls the subroutines CALC_STRESS and CalcJ_Stuff. The numerical
calculations for both subroutines were verified by examining the debug output file.

e For the functions FN_SUM1_SESC_NSC, FN_SUM2_SESC_NSC, and FN_FIND_BETA,
by examining the debug file, the iterations were verified to converge within the specified
tolerance by examining the debug file.

For the calculations that were spot checked, all of the calculations printed in the debug file
agreed with the expected results for the critical TWC size documented in the check file obtained
from the SharePoint CM site: ConceptualDescription-XLPR-DSK-
004R0O_SIAM_TWCFail_v2.1.docx (Williams, 2010b). This verification against the checkfile was
done to confirm that the code matched the documented checkfile results.

B2.3 Verification of the Crack Opening Displacement Module

The software module that was part of this review is the crack opening displacement (COD),
COD _v2.1.f90, module. Input values and calculation results from the module were checked
against reference documents, as shown in Table B-9. A FORTRAN driver program
(checkCODdriver.fo0 and checkCODdriver.exe) was written to call the appropriate subroutines
and carry out the various tests.

B2.3.1 Crack Opening Displacement

The use of the GE/Electric Power Research Institute (EPRI) method to calculate COD is
requested through a parameter, “method,” when calling the Calc_COD subroutine. At present,
the GE/EPRI method for calculating COD is available in Mattie, et al. (2010).

The expressions used in the COD_v2.1.f90 module appear consistent with those detailed in the
“XLPR Model Document and Checking Desktop Guide” (Olson, 2010). As described there, the
calculation implemented for the GE/EPRI method used the blended solution coded in NRCPIPE
Version 3.0 (Battelle, 1996).

Table B—10 lists the inputs and outputs for the COD_v2.1.f90 module.
Note Olson (2010) and Mattie (2010) state that there is a mistake in the implementation of the
solution in NRCPIPE (Battelle, 1996) for the blended GE/EPRI COD solution. Olson (2010)

indicates that COD_v2.1.f90 uses a slightly modified form of the equations that does not include
the referenced mistake. The COD_v2.1.f90 module uses this modified form of the equations.

B-11

As part of the spot-checking approach, several subroutines, functions, and individual
expressions from the COD_v2.1.f90 module were tested to ensure that appropriate output

was returned. For example, using the checkCODdriver.exe program, the following subroutines
were checked: (i) Calc_COD, (ii) Blended_COD, and (iii) GetNeigborindices. Verification of
these subroutines involved running a number of test cases, each with different input values.

Table B-9. xLPR Module Included in Verification
Module Calculation Subroutine References

Crack opening displacement COD v2.1.f90 Olson (2010),* Mattie (2010)t

*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Battelle. 2010.

tMattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.” Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

Table B-10. Inputs and Outputs for Crack Opening Displacement Module: COD_v2.1.f90

Inputs Outputs
Diameter = R_o: pipe outer radius
COD_OD: crack opening on
Wall thickness = thick: pipe wall thickness the outside of the pipe at the
- centerline of the crack (-1.0
Crack length = theta: half-crack length (radians) if the if_flag < 0)

Operating Loads pressure: pipe internal pressure

Crack opening

Transient Loads = BM: applied bending moment displacement =
F_ax: applied axial force (excluding COD_ID: crack opening on
pressure effect) the inside of the pipe at the
Material Flow Stress siav: pipe vield stress centerline of the crack (-1.0
(Stress Strain) = gy: pipey if the if_flag < 0)

sigu: pipe ultimate stress
RO_alpha, RO_sigo, RO_epso, RO_n:
Ramberg-Osgood stress-strain
parameters
sig0_wrs, sig1_wrs, sig2_wrs,
sig3_wrs: Residual stress polynomial -
terms 0 through 3 Other
Resist_Jic, Resist_C, Resist_m: J-R
curve constants (failure criteria)

if_flag: failure indication flag

Other =

method: COD analysis method selector

Several input values for parameters were imported from a text file [testinputdata.txt] using the
FORTRAN driver program. Several parameter calculations contained in some of the
subroutines were also verified by insertion of intermediate dumps of data to the test logging file
[parametervaluedump.log]. Additionally, a Mathematica™ notebook was used to compute
independent parameter values for several test cases [see check_ COD_v2.1.nb]. The test
driver, calculation, and logging files (listed in Table B—11) are included together in the archive
file [codchecks.zip].

The subroutine Calc_COD is called using parameter values from the six test cases described in
the xLPR Model Document and Checking Desktop Guide (Mattie, 2010). These cases were
selected because the values can be readily compared to those previously tested and the input
parameters cover a range of representative data. The parameter input values for the test cases
are imported into the FORTRAN driver program (checkCODdriver.exe) from a text file
(testinputdata.txt). All test cases are called using method 0 for the GE/EPRI calculation. The
input values used for test cases 1 to 5 are given in Table B—12.

B-12

Table B-11. Files Contained in the Archive codchecks.zip
File Name Notes

checkCODdriver.f90 This is the test driver program, which calls several subroutines from the
COD _v2.1.90 module.

checkCODdriver.exe The check driver executable program. The executable file was built linking both
the checkCODdriver.f90 and COD_v2.1_mod4checks.f90 object code.

testinputdata.txt This contains the input values for the test cases. When checkCODdriver.exe is
executed, this input file should be used.

COD_v2.1_mod4checks.f90 This is the original COD_v2.1.90 source code, which has had additional
debugging statements added to access intermediate parameter values.

parametervaluedump.log This log file is used to store and view parameter values from the additional
debugging statements that were added to the original COD_v2.1.f90 source code.

check_COD_v2.1.nb This is a Mathematica™ notebook that contains several additional calculations
and checks for the subroutines and parameters.

check_COD_v2.1.pdf This is a pdf format file containing the contents of a Mathematica™ notebook file
(for user convenience).

Table B-12. Parameter Input Values for Test Cases 1 to 5 as Presented in Olson (2010)*

Parameter, Units Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5
R_o,in 2.25 18 2.25 6.375 2.1
thick, in 0.214285714 1.714285714 0.214285714 0.607142857 0.2
theta, rad 0.5013974 1.0027955 1.002795267 1.002795459 1.0547
pressure, psi 933.3333333 933.3333333 807.1428571 807.1428571 0
BM, in-lb 130597 22176061.93 44860.27408 930047.6436 325242.222
F_ax, Ib 0 0 0 0 0
sigy, psi 49983.25567 49983.25567 35789.61475 35789.61475 50000
sigu, psi 74974.8835 74974.8835 47013.58238 47013.58238 110000
RO_alpha, - 6.349384579 6.349384579 11 11 1
RO_sigo, psi 49983.25567 49983.25567 35789.61475 35789.61475 50000
RO_epso, - 0.001785116 0.001785116 0.001350552 0.001350552 0.001666667
RO_n, - 6.316480712 6.316480712 4.754679198 4.754679198 2
Resist_Jic, Ib/in 0 0 0 0 14515.93603
Resist_C, - 0 0 0 0 105374.9917
Resist_m, - 0 0 0 0 1.03491313
sig0_wrs, psi 0 0 0 0 0
sig1_wrs, psi 0 0 0 0 0
sig2_wrs, psi 0 0 0 0 0
sig3_wrs, psi 0 0 0 0 0
*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

The parameter input values for test case 6 are given in Table B—-13. Note that for Test Case 6,
Olson (2010) gives the input vales in Sl units.

B-13

Table B-13. Parameter Input Values for Test Case 6 as Presented in Olson (2010)*
Parameter, Units Test Case 6

R_o, mm 190.5
thick, mm 40.132
theta, rad 1.8
pressure, MPa 15.52989
BM, N-mm 206879000
F_ax, N 21570
sigy, MPa 124.322
sigu, MPa 368.641
alpha, - 4.47291
sigo, MPa 124.322
epso, - 0.000701989
n, - 3.93325
J_ic, N/mm 391.884
C 225.528
m, - 0.622615
sig0_wrs, MPa 286.06
sig1_wrs, MPa -1080.1
sig2_wrs, MPa -1.06342
sig3_wrs, MPa 1017.37
COD, mm 334.151111
*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

Table B—14 provides the expected results for the test case calculations as reported in

Olson (2010).

Note that the listed results from Mattie (2010) are for the COD and are collected from several
source programs. The results listed as “Program” are from the COD_v2.1 module as tested by
Olson (2010), the results from Excel are from an independent spreadsheet (Mattie, 2010), and
the results listed as “NRCPIPE” are from the NRCPIPE User’s Guide (Battelle, 1996).

Table B-14. Expected Results from Olson (2010)*

Parameter,

Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Program 0.0655901 in 0.1938032 in 0.0861614 in 0.176766 in 0.5620454 in 334.151111 mm
Excel® 0.065591 in 0.1938032 in 0.0861613 in 0.176766 in 0.5620452 in —
NRCPIPE na na na na 0.5618 in —

*Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Batelle. 2010.

Table B—15 shows the result values that were calculated for the six test cases.

The results for all of the test cases match those previously reported from the COD_v2.1 module
(Mattie, 2010) by rounding the final digits. These results agree well with the results reported
from Excel (Mattie, 2010) and with the values reported from NRCPIPE (Battelle, 1996).

For the subroutine Blended_COD, a number of internal parameters were checked. The variable
h2_tdata is equated to the results from a call to the GetBinlinearlnterpolation function. The
inputs to this function are the parameters TOP_h2t10, en_h2t10, h2_t10data, aob, and RO _n.
The values for TOP_h2t10, en_h2t10, and h2_t10data are defined in the COD module as
arrays, and their values are constant. The values for aob and RO_n are varied for each case
tested. RO_n was an input parameter for the Calc_COD subroutine, and aob is calculated
internally. The values used for the six input test cases were the same as those used for Test 1
of subroutine Calc_COD.

B-14

To determine the expected results for the GetBilinearlnterpolation function (h2_tdata), a
separate Mathematica™ notebook was written to calculate the appropriate interpolated values
(see check_COD_v2.1.nb for more information). Values of aob, calculated in the Calc_COD
module for the test cases 1 to 6, were extracted from test case runs by exporting values to an
external text file. Table B—16 gives the input values for aob and RO_n used in the test cases.

The expected results shown in Table B-17 are from calculations using Mathematica™ and
documented in the notebook (check_COD_v2.1.nb).

Table B—18 gives the results obtained from the checkCODdriver program for the six test cases.

As shown, the test results for all cases agree with the expected results considering possible
round-off error.

The crack opening displacement due to the tensile axial force is defined by the parameter
delta_pt and is calculated in subroutine Blended_COD. The expression used to calculate
delta_pt is detailed in Mattie (2010). The expression for delta_pt coded in the subroutine
Blended_COD is the second term in the expression defined in Mattie (2010, Eq. 3). There, the
author notes that there was a mistake in implementing the solution in NRCPIPE (Battelle, 1996).
Mattie (2010) refers to GE/EPRI NP-5596 (EPRI, 1988) and indicates that the min the P/Pg
term does not belong there. This adjustment to the expression is further noted in the
COD_v2.1.f90 source code.

Table B—-15. Calculated Results for All 6 Test Cases

Parameter, Units Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
check

CODdriver.exe 0.06559006 in | 0.19380319in | 0.08616136 in | 0.1767660 in | 0.56204536 in | 334.1511111 mm
Program results

Table B-16. Input Values for aob and RO_n
Parameter
Case # aob RO n
1 0.159599749326848 6.316480711999990
2 0.319199721470617 6.316480711999990
3 0.319199647304414 4.754679197999990
4 0.319199708419912 4.754679197999990
5 0.335721436958044 2.000000000000000
6 0.572957795130823 3.93325
Table B-17. Output Values for aob and RO_n Using Mathematica™
Case aob RO_n Interpolated Results
1 0.159599749326848 6.31648071199999 4.640597114534663
2 0.319199721470617 6.31648071199999 2.5303812910481627
3 0.319199647304414 4.75467919799999 3.103644802818521
4 0.319199708419912 4.75467919799999 3.1036443056682113
5 0.335721436958044 2. 4.387134900018311
6 0.572957795130823 3.93325 2.04444175
Table B—18. Output Values for aob and RO_n
Parameter Test Result
Case # aob RO _n h2_tdata(2,1)
1 0.159599749326848 6.316480711999990 4.640597115
2 0.319199721470617 6.316480711999990 2.530381291
3 0.319199647304414 4.754679197999990 3.103644803
4 0.319199708419912 4.754679197999990 3.103644306
5 0.335721436958044 2.000000000000000 4.3871349
6 0.572957795130823 3.933250000000000 2.04444175

B-15

For the verification testing, the values for the parameter delta_pt were calculated independently
in a separate Mathematica™ notebook (see check_COD_v2.1.nb), based upon the expressions
presented in the xLPR Model Documentation and Checking Desktop Guide (Mattie, 2010) and
the COD v2.1.f90 source code. The values for delta_pt were calculated for the six test cases
considered in the test of subroutine Calc_COD. The test cases and expected results (based
upon parameter value dumps from the COD_v2.1 module) are given in Table B—19.

The results from the Mathematica™ notebook, as shown in Table B—20, agree with those from
intermediate values extracted from the COD_v2.1 module. Therefore, all tests pass to within
expected precision.

Table B-19. Expected Results for the Parameter delta_pt from COD_v2.1 Module
Case # delta_pt
1.000448727E-07
2.47842975E-05
1.412412089E-04
4.00183894E-04
0
24.630017

O |IWIN|—

Table B—20. Comparison of Results for Parameter delta_pt

Case # COD_V2.1 Module Output Mathematica Output
1 1.000448727E-07 1.0004487271486431E-07
2 2.47842975E-05 2.4784297594405805E-05
3 1.412412089E-04 1.4124120894351E-04
4 4.00183894E-04 4.001838940377014E-04
5 0 0
6 24.630017 24.63001707844345

The parameter delta_pbpt is calculated in subroutine Blended COD. For the test, the values for
the parameter delta_pbpt were calculated independently in a separate Mathematica™ notebook
(see check_COD_v2.1.nb), based upon the expressions presented in the xLPR Model
Documentation and Checking Desktop Guide (Mattie, 2010) and the COD_v2.1.f90 source
code. The values for delta_pbpt were calculated for the six test cases considered in the test for
Subroutine Calc_COD. The test cases and expected results (based upon parameter value
dumps from the COD_v2.1 module) are given in Table B—-21.

The results from the Mathematica™ notebook, given in Table B—22, agree with those from
intermediate values extracted from the COD _v2.1 module. Therefore, all tests pass to within
expected precision.

The function GetBilinearinterpolation is called from subroutine Blended_COD. In this test, the
subroutine GetBilinearlnterpolation is called five times. The five tests are intended to verify that
for a given, simple set of input coordinates, the function will properly handle requests for indices
that lie outside of the range of values in the indices, i.e., exactly on the indices, having one
value on the indices with another value between indices, and having both values between
indices. The test indices (coordinates) used are given in Table B—-23.

B-16

Table B-21. Expected Results for Parameter delta_pbpt from COD_v2.1 Module

Case #

delta_pbpt

5.371345E-02

1.642915E-02

6.1857778977E-02

0.11280231759

0.430521175

oW |N|=

Table B—22. Comparison of Results for Parameter delta_pbpt

Case # COD_v2.1 Module Output Mathematica Output
1 5.371345E-02 5.371345078046241E-02
2 1.642915E-02 1.6429150589244587E-02
3 6.1857778977E-02 1.85777897729749E-02
4 0.11280231759 0.11280231759279842
5 0.430521175 0.4305211754024092
6 — J—

Table B-23. Test Indices

Parameter (Array)

Indice Coordinate Values

testxlist

1,2,3

testylist

1,2,3,4,5

The third dimension (z) is a function of the testxlist and testylist values. For this test, the z
surface was defined as z(x,y) = x x y; therefore, the values given in Table B-24 were used for
the z surface.

The test case input values for the x and y coordinates, the assumed test indices, and the
expected results from the function GetBilinearlnterpolation are given in Table B-25 (as
calculated in the Mathematica™ notebook check_COD_v2.1.nb).

The results for the five tests, as output from the checkCODdriver program (e.g., see
parametervaluedump.log, TESTR1) were in agreement with all expected results as shown in
Table B-26 (all tests passed).

The subroutine GetNeigborindices is called from within Blended_COD. In this test, the
subroutine GetNeigborindices is called four times. The four tests are intended to verify that for
a given one-dimensional array of values, the subroutine will properly handle requests for
neighbor indices for values that lie between two indices, for values that lie outside of the range
of the indices (both for values greater and less than the given range), and for a requested
number that is the same value as one of the indices. The input values and expected results are
given in Table B-27.

The results from the test, as obtained from the checkCODdriver.exe console output, are given in
Table B-28. The expected results were observed for all trials; therefore, all tests pass.

B2.4 Verification of the In-Service Inspection Module

This XLPR module, ISI_v2.1.f90, calculates the probability of not detecting a crack for various
crack depth to wall thickness ratios and returns a flag (0 = not detected, 1 = detected) that
indicates whether or not the crack was detected. The software module that was part of this
review is shown in Table B-29. Input values and calculation results from the module were

checked against a reference document. This checking was performed on a limited basis. The
DLLs were modified to write input information and intermediate calculation results to output files.

B-17

The results from the calculations and the input information were compared to the source
documentation. The reference used in this testing for this module is also shown in Table B—29.

Table B—24. Values Used for Z Surface
Array Elements
Parameter (Array, Dimension (3, 5)) X Coordinate Y Coordinates
testzsurface 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
Table B—25. Expected Results From GetBilinearInterpolation
Test Case x Coordinate Value (x#) y Coordinate value (y#) Expected Result
R1 0 0 1
R2 4 6 15
R3 2 3 6
R4 2.5 3 7.5
R5 2.5 3.5 8.75
Table B—26. Test Results From GetBilinearInterpolation
Test Case x Coordinate Value (x#) y Coordinate Value (y#) Test Result
R1 0 0 1
R2 4 6 15
R3 2 3 6
R4 2.5 3 7.5
R5 2.5 3.5 8.75
Table B-27. Expected Results of GetNeigborindices Testing
Test Input Coordinate Value | Expected Lower Value Returned Expected Greater Value Returned
3A 4.5 4 5
3B 11.0 10 10
3C 7.0 7 7
3D 0 1 1
Table B-28. Test Results of GetNeigborindices
Test Input Coordinate Value | Lower Value Returned From Test Greater Valu.?.:;:tumed From
3A 4.5 4 5
3B 11.0 10 10
3C 7.0 7 7
3D 0 1 1
Table B—29. xLPR Module Included in Verification
Module Dynamic Link Library GoldSim Model File References
In-Service Inspection, ISI_DLL_v2.1.dlIx ISI_v2.1_GS_Framework_Test_File. Harrington, et al.
Version 2.1 gsm (2011)*
*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.

Table B—30 shows the input and output for the in-service inspection module.

The software logic agreed with the descriptions in Harrington, et al. (2011), and results from the
software agreed with spreadsheet calculations. However, the following is recommended:

1. Harrington, et al. (2011) indicate that if a random sample is less than the calculated
probability of detection, then the crack is considered to have been detected. Revise
Harrington, et al. (2011) to indicate that if the calculated probability of nondetection is

B-18

less than or equal to a randomly sampled value from a uniform distribution, then the
crack is considered to have been detected.

Add error detection to the DLL. For example, if a crack depth to wall thickness ratio
greater than one is input, then the DLL can still produce a probability of nondetection
that appears valid when it is not valid. For example, at an invalid crack depth to wall
thickness ratio of 1.1 and parameters set to their mean values, the probability of
nondetection is 0.045. Table B—-31 shows that this result is not much different than
results from valid ratios.

Harrington, et al. (2011) describe a probability of detection curve that is nearly flat and
this shape is reflected in the results shown in Table B-31. Clarify in Harrington, et al.

(2011) how this shape is valid over the range of crack depth to wall thickness ratios from

0.1 to 1.0 and with a nonzero probability of nondetection at a ratio of 1.0.

Table B-30. Input and Output for In-Service Inspection Module: ISI_v2.1.f90

ISI Module Input Description ISI Module Output Description
aot Crack Depth to Wall Thickness Ratio Idetected Detection Flag
(0 <aot<1)
Beta1 4 parameter in Equation 15 PND (i.e., 1-POD) Probability of
nondetection (PND)
Beta2 B, parameter in Equation 15 time_end_time_begin DLL CPU clock time
Urnd Uniform random number — —
(O<urnd <1)
Table B-31. In-Service Inspection Module Probability of Nondetection
Crack Depth to Wall Thickness Ratio Beta1 Beta2 Probability of Nondetection
0.1 2.7076 0.31 0.061
0.3 2.7076 0.31 0.057
0.4 2.7076 0.31 0.056
0.9 2.7076 0.31 0.048
1.0 2.7076 0.31 0.047

B3 CONCLUSIONS

This section summarizes the verification testing that was documented in Section B2. In
Section B3.1, for conciseness the summary is presented in tabular form. Section 3.2
summarizes recommendations for resolving possible coding issues found during
verification testing.

B3.1 Summary of Verification Testing

The xLPR modules that underwent verification testing are listed in Table B—1, Section 1.1.
Table B-32 summarizes the verification testing.

B-19

Table B-32. Summary of Verification Testing

Module Name Verification Summary
Coalescence_v2.2 Verified using spreadsheet calculations and comparison with Harrington, et al. (2011)*
crack_init_v2.1 Direct Model 1: No issues

Direct Model 2: Possible code error (see Table B-3), other minor code and
documentation inconsistencies

Weibull Model: No issues

grower v2.1 Major coding error from Harrington, et al. (2011, Eq. 3.21)*

kSurf_v1.1 Equations spot checked with “Surface Crack Anderson.xIsx” and Anderson, et al. (2002)t

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.docx (Williams and
Klasky, 2010)f

kTWC_v1.1 Influence function data spot checked with
“TWC Anderson.xlsm”

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.docx (Williams and Klasky,
2010)§

SCFail_v2.1 Equations spot checked with Rahman (1998), Brust (1987)Y], and Harrington, et al. (2011)*

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.docx (Williams, 2010)#

TWCFail_v2.1 Equations spot checked with Rahman (1998), Gilles and Brust (1991)**, Brust and Gilles
(1994)11, and Brust (1987)

Verified by comparison of output with
ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.docx (Williams, 2010)1%

COD_v2.1 Equations spot checked with Olson (2010)§§ and Mattie, et al. (2010)

Verified using checkCODdriver.exe and Mathematica™ and comparison with Olson (2010)
§§ and Mattie (2010) 11

ISI_v2.1 Verified using spreadsheet calculations and comparison with Harrington, et al. (2011)*

*Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D.J. Shim, and G. White. “Models and Inputs
Selected for Use in the xLPR Pilot Study.” Product Identifier 1022528. Palo Alto, California: Electric Power Research Institute. 2011.
tAnderson, L., G.. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry. “Development of Stress Intensity Factor Solutions for Surface
and Embedded Cracks in API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.

tWilliams, P. and H. Klasky. “ConceptualDescription-XLPR-DSK-004R0_SIAM_kSurf_v1.1.” Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.

§Williams, P. and H. Klasky. “ConceptualDescription-XLPR-DSK-004R0_SIAM_kTWC_v1.1.” Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010.

Rahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II: Idealized Cracks and Closed-Form Equations.”
Engineering Fracture Mechanics. Vol. 61. pp. 213-230. 1998.

{Brust, F.W. NUREG/CR-4853, “Approximate Methods for Fracture Analysis Through-Wall Cracked Pipes.” Washington, DC: NRC.

pp. 2—13. 1987.

Williams, P. “ConceptualDescription-XLPR-DSK-004R0_SIAM_SCFail_v2.1.” Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.
** Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part |I: Theory.” Nuclear Engineering and Design. Vol. 127.

pp. 1-17. 1991.

t1Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members Subjected to Combined Tensile and Bending Loads.”
Journal of Offshore Mechanics and Arctic Engineering. Vol. 116. pp. 221-227. 1994.

tiWilliams, P. “ConceptualDescription-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.” Oak Ridge, Tennessee: Oak Ridge National

Laboratory. 2010b.

§§ Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.” Columbus, Ohio: Battelle. 2010.

Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinch. “Development, Analysis, and Evaluation of a Commercial Software Framework for the
Study of Extremely Low Probability of Rupture (xLPR) Events at Nuclear Power Plants.” SAND2010-8480. Albuquerque, New Mexico: Sandia
National Laboratories. 2010.

fMattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.” Albuquerque, New Mexico: Sandia National
Laboratories. 2010.

B3.2 Issues and Recommendations Based on Verification Testing

The following list summarizes coding issues or documentation inconsistencies that arose during
verification testing. Possible recommendations to clarify these issues are also given.

1. Module crack_init_V2.1 (crack initiation), for the same temperature and stress input
data, comparison of Direct 1, Direct 2, and Weibull models produced significantly
different results. However, because each model produces significantly different results
for the same input stress and temperature values, the appropriateness of model

B-20

parameters and validity of these different models should be reviewed and discussed in
Harrington, et al. (2011). Therefore, the parameter values listed in Harrington, et al.
(2011, Table 3.14) may need to be reviewed.

2. Module grower_V2.1 (crack growth), Ahluwalia (2007) shows a sample calculation
pertaining to Equation 3.21 that uses the base 10 logarithm (i.e., log4o) versus the
natural logarithm (i.e., In). The code, however, incorrectly implements Harrington, et al.
(2011, Eq. 3.21) by using the natural logarithm in the calculation.

3. For the module ISI_v2.1 (inservice inspection), the software logic agreed with the
descriptions in Harrington, et al. (2011) and results from the software agreed with
spreadsheet calculations; however, the following is recommended:

a. Harrington, et al. (2011) indicate that if a random sample is less than the
calculated probability of detection, then the crack is considered to have been
detected. Revise Harrington, et al. (2011) to indicate that if the calculated
probability of nondetection is less than or equal to a randomly sampled value
from a uniform distribution, then the crack is considered to have been detected.

b. Add error detection to the DLL. For example, if a crack depth to wall thickness
ratio greater than one is input, then the DLL can still produce a probability of
nondetection that appears valid when it is not valid. Additional details were
provided in Section 2.4.

C. Harrington, et al. (2011) describe a probability of detection curve that is nearly
flat, and this shape is reflected in the results shown in Table B-31. Clarify in
Harrington, et al. (2011) how this shape is valid over the range of crack depth to
wall thickness ratios from 0.1 to 1.0 and with a nonzero probability of
nondetection at a ratio of 1.0.

B4 REFERENCES

Ahluwalia, K. “Materials Reliability Program: Mitigation of PWSCC in Nickel-Base Alloys by
Optimizing Hydrogen in the Primary Water (MRP-213).” Product Identifier 1015288. Palo Alto,
California: Electric Power Research Institute. 2007.

Anderson, L., G. Thorwald, D.J. Revelle, D.A. Osage, J.L. Janelle, and M.E. Fuhry.
“Development of Stress Intensity Factor Solutions for Surface and Embedded Cracks in
API 579.” WRC Bulletin 471. Shaker Heights, Ohio: Welding Research Council. 2002.

Battelle. “NRCPIPE User’'s Guide (Windows Version 3.0).” Contract NRC-04-91-063.
Columbus, Ohio: Batelle. 1996.

Brust, F.W. NUREG/CR—-4853, “Approximate Methods for Fracture Analysis Through-Wall
Cracked Pipes.” Washington, DC: NRC. pp. 2-13. 1987.

Brust, F.W. and P. Gilles. “Approximate Methods for Fracture Analysis of Tubular Members

Subjected to Combined Tensile and Bending Loads.” Journal of Offshore Mechanics and Arctic
Engineering. Vol. 116. pp. 221-227. 1994.

B-21

EPRI. “Elastic-Plastic Fracture Analysis of Through-Wall and Surface Flaws in Cylinders.
NP-5596." Palo Alto, California: EPRI. 1988.

Gilles, P. and F.W. Brust. “Approximate Fracture Methods for Pipes—Part I: Theory. Nuclear
Engineering and Design. Vol. 127. pp. 1-17. 1991.

GoldSim Technology Group LLC. “GoldSim® Version 10.5.” Issaquah, Washington: GoldSim
Technology Group LLC. 2010.

Harrington, C., F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen,
P. Scott, D.J. Shim, and G. White. “Models and Inputs Selected for Use in the xLPR Pilot
Study.” Product Identifier 1022528. Palo Alto, California: EPRI. 2011.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments Modular-
Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.” ORNL/NRC/LTR-247.
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010.

Lahey Computer Systems. “Lahey/Fuijitsu Fortran v7.1 for Windows.” Incline Village, Nevada:
Lahey Computer Systems, Inc. 2004.

Mattie, P.D. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.1.DLL.”
Albuquerque, New Mexico: Sandia National Laboratories. 2010.

Mattie, P.D., C.J. Sallaberry, J.C. Helton, and D.A. Kalinch. “Development, Analysis, and
Evaluation of a Commercial Software Framework for the Study of Extremely Low Probability of
Rupture (XLPR) Events at Nuclear Power Plants.” SAND2010-8480. Albuquerque,

New Mexico: Sandia National Laboratories. 2010.

Microsoft Corporation. “Microsoft Office Excel® 2007.” Redmond, Washington: Microsoft
Corporation. 2007.

Olson, R. “xLPR Model Document and Checking Desktop Guide, Model ID: COD_v2.0.”
Columbus, Ohio: Battelle. 2010.

Press, W.H., W.T. Vetterling, S.A. Teukolsky, and B.P. Flannery. Numerical Recipes, The Art of
Scientific Computing, Fortran 77. Cambridge, Massachusetts. Cambridge University
Press. 1992.

Rahman, S. “Net-Section-Collapse Analysis of Circumferentially Cracked Cylinders—Part II:
Idealized Cracks and Closed-Form Equations.” Engineering Fracture Mechanics. Vol. 61.
pp. 213-230. 1998.

U.S. Nuclear Regulatory Commission and Electric Power Research Institute. “xLPR Version 1.0
Report—Technical Basis and Pilot Study Problem Results.” Washington, DC: U.S. Nuclear
Regulatory Commission, Office of Nuclear Regulatory Research; Palo Alto, California:

EPRI. 2011.

Williams, P. “Conceptual Description-XLPR-DSK-004R0_SIAM_SCFail_v2.1.” Oak Ridge,
Tennessee: Oak Ridge National Laboratory. 2010a.

Williams, P. “Conceptual Description-XLPR-DSK-004R0_SIAM_TWCFail_v2.1.” Oak Ridge,
Tennessee: Oak Ridge National Laboratory. 2010b.

B-22

Williams, P. and H. Klasky. “Conceptual Description-XLPR-DSK-004R0_SIAM_kSurf_v1.1.”
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010a.

Williams, P. and H. Klasky. “Conceptual Description-XLPR-DSK-004R0_SIAM_kTWC_v1.1.”
Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010b.

Wolfram Research, Inc. “Wolfram Mathematica™ 7.0.” Champaign, lllinois: Wolfram
Research, Inc. 2008.

B-23

APPENDIX C

IMPLEMENTATION OF A “DUMMY” MODULE IN XLPR-GoldSim
AND XLPR-SIAM

The objective of this appendix is to document efforts that have been made to simulate
development and implementation of a “new” test module into both the xLPR-GoldSim
(XLPR-GoldSim) and xLPR-SIAM (XLPR-SIAM) platforms. This has been done as a test
exercise to gain insight into analyses of the flexibility of the frames to incorporate updates and
perform code maintenance. This work follows the general requirements that are described

in Chapter 4 of this report. An abbreviated description of the requirements for the test
module follows.

For this exercise, the test module had the following requirements:

. The module should be developed in FORTRAN and compiled into a dynamically linked
library (DLL) for use with the GoldSim-based XLPR-GoldSim or with the F2Py utility for
use with the Python-based XLPR-SIAM.

° The module should take as input two random parameters, ry and r,, and should apply
these random factors to the crack depth and crack length (the depth and length should
also be provided as inputs to the procedure).

. The parameters ry and r, should be defined as random parameters where

- The inputs for these random parameters are in the master spreadsheet (in
the case of XLPR-GoldSim) or in one of the input parameter tabs (in the case
of XLPR-SIAM)

- The random parameters can be specified as distributions in xLPR (e.g., normal,
uniform, log distributions)

- The parameters can be switched from aleatory uncertainty to epistemic
uncertainty, and from one distribution to another

. The random parameters ry and r, should be applied after the subroutine grower
(grower_v2.1.f90). More specifically, the factors should be applied to all active cracks. If
applicable, the physical bounds for the system (e.g., thickness or diameter) should be
checked to ensure they are not exceeded due to integration of the module.

. The parameters ry and r, should be tracked in the set of appropriate random input
parameters (epistemic or aleatory) to support sensitivity analyses. Further, these new
input parameters should be added to appropriate elements in GoldSim output files
or databases.

Also, during the development and incorporation of the test module, the following information will
be used to compare the model frameworks (the results of this comparison are reflected in
Table 4.1 of this report).

1. The estimated time needed to incorporate a new module to each of the codes and major
difficulties faced in incorporating the new module

C-1

2. An evaluation of the availability of existing functions in frame to support the Monte Carlo
frame (i.e., define input parameters, sample input parameters, record input parameters,
manage data output from multiple realizations, display Monte Carlo outputs,
communicate with existing modules)

3. An evaluation of the capability of the codes to expose (or display) intermediate outputs
that are not in default outputs

4. An estimate of the time needed to sufficiently learn Python and GoldSim so codes can
be maintained

The “New” Test Module

The test module that will be implemented will be a FORTRAN-based subroutine,
crackenhancer_v0.1.f90. The module will receive an input array and an output array. The input
array should pass the crack length and the crack depth, as well as the random enhancement
factors ry and r,, which will be referred to as the cracklengthenhancement and
crackdepthenhancement factors, respectively. The module will simply multiply the crack length
and the crack depth by their respective enhancement factors, which are unitless, and then
return the modified values for the crack length and depth (i.e., as depicted in the following
simplified diagram):

Input: Output:
Crack Length [m] Modified Crack Length [m]
Crack Depth [m] Crackenhancer | gy, \odified Crack Depth [m]

MODULE

Crack Length Enhancement Factor [-]
Crack Depth Enhancement Factor [-]

For interaction with GoldSim, the module must be compiled as a DLL. Also, the file must have
additional input/output values [for details, see GoldSim Technology Group (2011, Appendix C)].

Implementing the CrackEnhancer Module Into the XLPR-GoldSim Framework
The steps taken to implement the module in the XLPR-GoldSim framework are detailed next.

1. First, it was necessary to add the new crack enhancement parameters to the framework.
To do this, the model implementation requires several substeps.

a. The new parameters were incorporated into the framework by first adding the
uncertain (random) parameters in the BETA Inputs AE_09 30_2010.xIsx
Microsoft® Excel® spreadsheet the model used. The parameters were added
to the “Uncertain Parameters” spreadsheet and are shown in the
following screenshot:

194 Distribution Type Novrmal

185 Mean 1000

196 crackdepthenhance Seav 0.001 Aleatory
197 Determin 1

198 37 Type 1

199 Distribution Type Normal

200/ Mean 1000

201 cracklengthenhance Seav 0.001 Aleatory
202 Determin 1

203 38 Type 1

[] [] []
).

Beta_inputs
-] = -]

»@[»

Beta_DPD_Inputs

Addition of the parameters to the spreadsheet allows for persistence of input
values, and manually changing the “Type” specification allows the user to change
the type to either “Aleatory” or “Epistemic.” The model is written such that the
parameters are sampled as both aleatory and epistemic (object elements for
these must be added; this will be covered in a later step), and the type is
checked in an additional switch [this logic must be added as well (type = 1
Aleatory, otherwise the element is assumed to be Epistemic)].

However, before the parameters could be read by GoldSim, the Excel
spreadsheet interface element in the XLPR-GoldSim model (“Beta_inputs” in
\Data_Source) had to be modified to point to the newly added cells. An example
of the required changes are shown in the following screenshot (the same
procedure should be followed for the other new parameter):

Spreadsheet Properties : Beta_inputs E3 Import Spreadsheet Data to Element Output E3
Definition Element's Output Properties
Element ID: Beta_inputs e Name: crackdepthenhance
Description:
Description: Incudes all of the Inputs for the model run EERLL
Type: Type... Vector [Mormal_Deterministic]
Definition Uriits in Spreadsheet:
ile; BETA_Inputs_AE_09_30_2010.xlsx i
MS-Excel File: —PUIS AR AR AR Dptions 22 Laocation in Spreadsheet
Inputs and Outputs
Sheet Mame: Cell Range:
e Cocationlinitpresdsheck 0 UncertainPar + | H195 : H198 [[5] Location... | [~ Offsets... |
ﬁ].. m_Alloy_182 Uncertain Parameters!H157:H160
ﬂ. sigy_Aloy_182 Uncertain Parameters!H1562:H165
ﬁ].. sigu_Alloy_182 Uncertain Parameters'H187:H171
28| sigy_A516_Gr_70 Uncerain ParametersH173:H176 [oc J[concel | [teb |
ﬁ].. sigu_AS16_Gr_70 Uncertain Parameters'H178:H182
ﬂ. F_AS16_Gr_70 Uncertain Parameters!H184:H187
ER
|

n_AS16_Gr_70 Uncertain Parameters'H189:H193
cl pthenhance Uncertain Paramete
| 2gy| cracklengthenhance Uncertain Parameters’H200:H203

[add... | [Remove | [Edit.. | [2] Location..] [shift.. |[3][3
Save Results
Final Values Time Histories
OK | | Cancel ‘ | Help |

Next, it was necessary to add stochastic input parameters to use the array input
values for the parameters that are imported at run time from the linked Excel
spreadsheet. The XLPR-GoldSim model has been implemented such that there
are two stochastic elements sampled for each parameter regardless of intended
type (epistemic or aleatory). The locations for the sampling of the epistemic and
aleatory elements are submodel elements. Because the sampled stochastic
input elements are sampled in submodel elements, the submodel elements
(\Uncertain_Parameters\Epistemic_Uncertainty and
\Uncertain_Parameters\Aleatory Uncertainty) must have the elements added
into their interface properties; otherwise, the values imported from Excel will not
be exposed to the submodel and the sampled values in the submodel (to be
added) will not be exposed to the global or master models. This is done by
accessing the Epistemic and Aleatory submodels and setting the interfaces (for
both submodels) to pass the variables (the output interface should be done after
adding the stochastic input elements to the submodel elements):

C-3

[E5 Container Path: “\Uncertain_Parameters

" By

- By .

- Epls.tem|c_-IJncerta|ntyI \
Fﬂ@‘f%ﬁ

Dj\b

Aleatory_Uncertainty

= sy
B\ -

Aleatory_Uncertainty_2

Sampled_Values

SubModel Properties : Epistemic_Uncertainty |E|
Definition | Interface | Graphics | Time | Monte Carlo | Optimi 1 [Information |
Input Interface Definition
MName Definition A
Beta_inputs_C_Alloy_182 : Beta_inputs.C_Alloy_182
Beta_inputs_m_Alloy_182 | Beta_inputs.m_Alloy_182 3
Beta_inputs_sigy_Alloy_18; Beta_inputs.sigy_Alloy_182
Beta_inputs_sigu_Alloy_18: Beta_inputs.sigu_Alloy_182 X
Beta_inputs_sigy_AS516_G | Beta_inputs.sigy_AS16_Gr_70 7
Beta_inputs_sigu_AS516_G Beta_inputs.sigu_AS16_Gr_70
Beta_inputs_F_AS516_Gr_7: Beta_inputs.F_AS16_Gr_70 ¢
Beta_inputs_n_AS16_Gr_7: Beta_inputs.n_AS516_Gr_70 |: 5
DPD Module Beta_inputs_crackdepthen | Beta_inputs.crackdepthenhance |'_
- Beta_inputs_cracklengthen: Beta_inputs.cracklengthenhance ™ %l

Output Interface Definition

MName Result -
C_Alloy_182 Final Value &
m_Alloy_182 Final Value X
sigy_Alloy_182 Final Value
sigu_Alloy_182 Final Value i
sigy_A516_Gr_70 Final Value
sigu_AS516_Gr_70 Final Value ¢
F_AS16_Gr_70 Final Value G
n_A516_Gr_70 Final Value |2
crackdepthenhance Final Value | 3 %l
cracklengthenhance Final Value ™

[Ok] [Cancel] [Help]

For both crack enhancement parameters, stochastic input elements were created
in the \Uncertain_Parameters\Epistemic_Uncertainty\ submodel and the
\Uncertain_Parameters\Aleatory _Uncertainty\ submodel. An example
screenshot for the Epistemic_Uncertainty\ submodel follows:

s

-] -] L]
POD _detection o f\’ Itit Normal [PDF] =]
Stochastic Properties : crackdepthenhance =]] L] e] &S IA IL u
—— | Definition o crackdepthenhance [Ngmd Distribution -]
— 400
BementID: crackdepthenhance Parameters
] Tuncated 200
Description: s > Mean:
] [Beta_inputs_crackdepthenhance[Mean 200
’— —
assy | DPRYUnts: Type.. | Sceler cracklengthenhance Smdan Perefion: 100
"Betaanutsf-:la:kdepthenhan-:e[Stde-."

. 0

Distribution 999.995 1000.000 1000.005

Type: Normal & Edit..

Mode: (@ Sampled once () Resampled Fill Area Show Markcer

Calculator
-
¥ lore Cum. Probability: Value
§ o Statistics
- Final Values Time Histories el D Probabiity Densty: 399 940
Cond. Tail ctati 1000
Std Deviation: 0001 T Sy
[oK] [Cancel] [Help Skewness 0

At run time, the model imports values from Excel and then, at time zero, the

Epistemic and Aleatory submodels sample values for the stochastic elements
contained there. To determine which sampled parameter (Epistemic or Aleatory)
is used for a given parameter, the “Type” entry and the GoldSim selector
elements (which are located in \Uncertain_Parameters\Sampled_Values\) are

c—4

[SRES]

specified in the Excel spreadsheet. The next step is to add selector elements for
both crack enhancement factors; this is shown in the following screenshot.

Cortainer Path: ‘\Uncertain_Parameters\Sampled_Values

B B B B
bl A O bl A O > ‘?-A o B ‘i"i o > ‘?-A ars &4 Selector Properties : crackdepthenhance = (==

half_crack_length_init_SV Sigd_WRS_SV F_weld SV

ElementID: crackdepthenhance Appe
Y5 Q v w20 B B —
CAFR- CAZR- RERE L Ee, o Descrption:

crack_depth_init_SV Sigd_WRS_Mitigated_SV QoverR_SV

Betal_SV Temperature_SV
= = Selector Inputs
v B B B Note: The if statements are evaluated in order, and the Selector
(g A Ol)‘ i T OI> 4 b OD [E] takes on the value corresponding to the first true statement that is
4 [> s s 8- @ encountered. If all statements are false, it takes on the final value,
BimuWH_SV If Then
i Xc_SV P2V_Ratio_SV Beta2_SV (R oot e

2 A Material_Properties Beta_inputs.crackdepthenhance[Typsl=1 : Aleatory_Uncertainty.crackdepthenhance
g A s 4 V‘E o). 4 ?—E (e} Else : Epistemic_Uncertainty.cracl
[}
[I -
¥, 0 B Add Switch Delete Switch
> "‘A o o Crackdepthenhance

RandULoc_SV 0D Random_SV V| Final Values Time Histories

Definition
Pressure_SV

POD_Detection_SV

Display Units: Type... |Scalar

-] L] L]

Xc_mitigated_SV CH2_8v 4 ‘?‘2 Crs
B

Save Results

B
AR

Ok | | Cancel ‘ | Help
cracklengthenhance

RandU3_SV

The DPD option is a model capability that is not required for the current release of the
XLPR, and this capability is not evaluated in this testing effort.

The next step in implementing the crackenhancer module is to select the appropriate
location to add an interface from the GoldSim model to the external FORTRAN module
(compiled as a DLL). The intent is to apply the crack enhancement factors to active
cracks. This can be one of the more time-consuming steps because the code must be
carefully analyzed and understood; its complexity can vary widely depending upon the
intended function of the module to be implemented. Additionally, although the GoldSim
program offers many useful tools to navigate constructed models, the relationships
between parameter values that are updated can become complex. These relationships
must be examined carefully to prevent an unintended effect upon the data. The proper
sequence of parameter updating should be maintained.

It was determined that the location to interface and apply the module would be in the
crack growth submodel (\Crack_Growth \Crack_Growth_Submodels), immediately
following the call to the external subroutine grower (grower_v2.1.f90,
grower_DLL_v2.1.dlIx). The call to the external subroutine grower is made inside of the
Crack_Growth_Submodels, \Crack Growth_sc container. The crackenhancer module
will be implemented in the Crack_Growth_Submodels, \Update Crack Status container.
This container is updated (for surface cracks, Type = -1) following the update of the
parameters in the Crack _Growth_sc container. Also note the Crack Growth Submodel
is looped over all active cracks; therefore, the crackenhancer module will be applied on
an individual crack basis (not to an array of crack length and depth values).

The call to the crackenhancer module is made before the parameters contained in the
\Update_Crack_Status container are updated. Thus, the approach used in implementing
the module is to intercept the crack length and crack depth values that have been
passed through the grower module and modify the individual crack and depth values

C-5

before passing them onto the appropriate parameters (and/or functions) to update the
crack array.

The next step is to carry out the implementation strategy described in Step 2.

a. Here, it is first necessary to adjust the \Crack_Growth\Crack_Growth_Submodels
interface option to expose parameters from the main model to this submodel.
This step is depicted in the following screenshot.

@ < Container Path: “Crack_Growth

SubModel Properties : Crack_Growth_Submodels | =]
Definition | Interface |Graphics | Time | Mante Carlo | Optimization Informaﬁon|
Input Interface Definition
MName Definition A g
PWSCC_alpha PWSCC_alpha
in_yr Timestep_Length 'F))
sigl_wrs sigl_wrs
*
- H.2 H.2
Zinc Zinc i
P2V _Ratio P2V _Ratio
= chz ch2 e
IDBG Grower_IDBG = G
Crack_Growth_Submodels _ Crack_Growth_Results crackdepthenhance crackdepthenhance
= = = cracklengthenhance cracklengthenhance i %l

Qutput Interface Definition

Crack Growth Submodels e Result ~
Crack_Growth_Submodels contains the model estimaring Stress and crack growth for bg Ksurfd Final Value bl
and Through Walf Cracks. It is a submodel and thus run locally Ksurfso Final Value x
Ktwe Final Value
Crack_Growth_Results save the resulis of the DLLs Updated_Depth Final Value aw
Updated_Length Final Value
Updated_Type Final Value = e
Ksurf_DLL_Runtime Final Value G
Kitwe_DLL_Runtime Final Value
Grower_sc_lerr_grw Final Value %l
Grower_twe_IErr_grw Final Value i
[OK] [Cancel] [Help]
b. The next step is to add parameters necessary to pass input into the

crackenhancer module, the external function/DLL link to the crackenhancer DLL,
and parameters to handle output from the crackenhancer module. To do this,
several function expressions were added to the

Crack_Growth\Crack Growth_Submodels, \Update Crack_Status container.
The expression objects, along with the external function/DLL links to
crackenhancer, are shown in the following screenshot.

@@ @

SubModel Path: “Update_Crack_Status

[}>f P DLI'i
X 7y
c:rau:kdepthenhanc:e Crackenhancer

for

cracklengthenhance / \

>
X X

crack_depth half_crack_length
» X »

enhancedcrackdepth

Irflr
X

enhancedcracklength

[53'351_4 - [E’?r;.d - E}SH -

]

Updated_Depth Updated Type Updated Length

The parameters crackdepthenhance and cracklengthenhance point to the current
sampled values for the crack length and depth enhancement parameters. The
crack_depth and half_crack_length parameters point to the respective values as
returned from the grower module (i.e., Grower sc.crack_depth and
Grower_sc.half _crack length). The parameters enhancedcrackdepth and
enhancedcracklength are the modified values returned from the crackenhancer
module. Note that for the DLL object, the object must be linked to the DLL file
(the details of building the DLL file will be covered in a subsequent step) and the
interface options must be selected such that the input parameters and the output
parameters are properly passed (these must be in the correct order for the
module input and output arrays). The settings for the DLL element are shown in
the following two screenshots.

External Properties : crackenhancer

Definition | Interface

Element ID: crackenhancer
Description:
Options
DLL Path: crackenhancerdebug.dl
Function Mame: ~ crackenhancer_
[Lock onto this file

|:| Run in separate process

[unload DLL after each use
[Run Cleanup after each realization

The element defines 4 inputs and 2 outputs.

Save Results

Final Values

Time Histories

Ok] [Cancel] [Help
“Update_Crack_Status
D L External Properties : crackenhancer | 2 |
—i‘ ’ E . Interface
’ Input Interface Defintion
crackenhancer # Name Definition gk
1 | crackdepthenhance | crackdepthenhance x
2 | cacklengthenhance : cracklengthenhance
3 | crack_depth crack_depth 7
4 | half_crack_length half_crack_length
4
G
A
X X
rack_depth half_crack |
Qutput Interface Definition
- MName Data Type R
1 | enh_crack_depth Walue (m)
2 |enh_half_crack_lengt | Value (m) x
7
¢
G
— —
1314 1Y Lok J[concel J[rep
165 16 o

c. In addition to the elements added to the \Update _Crack_Status container, the
definitions for the parameters Updated Depth, Updated_Type and Updated_Length
must be updated so that they use the enhanced crack depth and size values. The
appropriate changes are shown in the following screenshots:

C-8

[n1H|
D.ﬁ(> Data Properties : Updated_Depth @

Definiti
crackdepthenhEV efinition
ElementID: Updated_Depth

D .f;(> Description:

cracklengthenhance Display Units: ™ Type... |Scalar

I> ﬁ Data Definition

if{enhancedradkdepth = =~Thickness,

crack_ ~Thickness,enhancedorackdepth) -
Data Source
ickdeptt
Type: [None v]
Save Results -
Final Values Time Histories
Eklengtt
[Ok] [Cancel] [Help]
L Ll
314 L. 314 314
s Plie™ a bm-% ’ bm-% ’
- Updateg_Depth . Updated_Type Updated_Length

r
/:rackenhaﬂcer \ Data Properties : Updated_Type @

Definition
ElementID: Updated_Type

Description:

Df;(> Df;(> Display Un\ts:l Type... |Scalar

crack_depth half_crack_length

Data Definition

Iif(enhancedcradmlepm>='"Thid<n355- 23

Data Source
Type: [None v]
Save Results
Final Values Time Histories
 I— —
314 314 [ok J[cancd [[heb
B> 164 -] B> 164 =] T

Updated_Depth - Update.d_Type - Updated_Length

For the Updated_Type, if the crack length is greater than or equal to the wall thickness, the
crack type is changed to -2, indicating a through wall crack.

@ 4 SubModel Path: \Update_Crack_Status

=3 »—————————a-» Li - —
X Data Properties : Updated_Length =]
crackdepthenhance crackenhancer Definiton
ElementID: Updated_Length
B> f .
Description:
cracklengthenhance Display Units: [m Type... | Scalar
X X Data Definition

if(enhancedcrackdepth ==~Thickness, 3. 1416/2
*enhancedcrackength®~Inside_Radius/(~Thickness +2
*~Inside_Radius),enhancedcracklength)

crack_depth half_crack_|

Data Source

Type: [NunE -]

Save Results
Final Values Time Histories

/ [O][Cancel][Help

—
314 314 34
B e ™ Ble™ o Plig™

Updated_Depth Updated Type - Updateerength -

Additionally, the crackenhancer module must be compiled as a DLL and have the
appropriate elements to interact with GoldSim [for details, see GoldSim Technology
Group (2011, Appendix C)].

a. Based upon requirements from GoldSim, the DLL module must have additional
input parameters (i.e., a method and a state variable), which are used for
controlling calls to the DLL (e.g., initializing the DLL, querying number of
input/output variables). This requirement thus makes it necessary to add the
appropriate logic to the subroutine to handle this communication requirement.

b. The module source code is relatively simple and is included next for reference.

This is a simple add-on module to test the complexity of adding an
addtional module to XLPR-SIAM and XLPR-GoldSim. The purpose of the module is to
multiply crack length and crack depth values by the respective
enhancement factors.
Subroutine crackenhancer (method, state, input, output)
implicit none

INTEGER (4), value :: method ! required by GoldSim(TM)
INTEGER (4) :: state ! required by GoldSim(TM)
REAL (8) :: input (*), output (*)

real (8) :: retavalue 0 ! temp. holder for enhanced depth

real (8) :: retcvalue 0 ! temp. holder for enhanced length

real (8) :: cracklengthenhance = 0 ! length enhancement factor

real (8) :: crackdepthenhance = 0 ! depth enhancement factor

real (8) :: crackdepth = 0 ! crack depth [m]

real (8) :: crackhlflen = 0 ! crack half-length [m]

real (8), dimension(2) :: outvector ! variable for output data
CHARACTER (len=22) :: logfilename = 'testlogger.log' ! log filename

C-10

INTEGER :: iloerror

! The case options are following requirements from GoldSim(TM) .
! See the User's Manual Appendix C for detailed information.
select case (method)

case(0) ! Initialize
continue
case(1l) ! Perform calculations

crackdepthenhance = input(2)

cracklengthenhance = input (1)
crackdepth = input (3)
crackhlflen = input (4)

! Simply multiply the crack depth and half-length by their
! respective enhancement factors

retavalue = crackdepthenhance*crackdepth

retcvalue = cracklengthenhance*crackhlflen

output (1) = retavalue
output (2) = retcvalue
! ELT, 12/27/2010 --- Opening log file to for intermediate values

! Open the input WRITE(*,*) fulldataset(ivars,icases)file
OPEN (UNIT=99, FILE=logfilename, STATUS='OLD', &
ACTION='WRITE', ACCESS='APPEND', IOSTAT=ioerror)

WRITE<99, *) IR S S R R S R R e e R EEEEEEEN

WRITE (99, *) 'input array values:'

WRITE (99, *) 'input(l) = ',input(1)

WRITE (99, *) 'input(2) = ', input(2)

WRITE (99, *) 'input(3) = ',input(3)

WRITE (99, *) 'input(4) = ', input(4)

WRITE (99, *) 'output array values:'

WRITE (99, *) 'ouput(l) = ',output(l)

WRITE (99, *) 'ouput(2) = ',output(2)

WRITE (99, %) 'ttt e e e et e e et et et e !
case (2) ! Report version number.

output (1)=0.1
case(3) ! Report input/output number array arguments

output (1)=4.00 ! Number of input variables in input array
output (2)=2.00 ! Number of output variables in output array

case(99) ! Clean up

continue

end select

end subroutine crackenhancer

C.

A separate write to an external file was added to the model (see previous source)
which logs the module input and output array values. This was done to verify
that the module was functioning as expected.

The authors of the XLPR-GoldSim utilized the Intel® FORTRAN compiler. In the
current effort, the crackenhancer module was implemented using the GNU
FORTRAN compiler, gfortran. The following commands (and flags) were used in
building the DLL:

gfortran -shared -mrtd -o <Name of DLL File> <Object Code>

In the source code, specification of the exposed function/subroutine is not
needed if using gfortran. Other compilers differ in this regard.

C-11

5. To fully assess the flexibility of the frameworks for exposing of parameter values for
output and post-processing, an additional task was performed to expose the crack
half-length and depth values before modification by the “new” crack enhancer module to
external logging and post-processing. The process is detailed as follows.

The results exported for post-processing in XLPR-GoldSim are located in
\Time_zero\Controls\Dashboards_and_Results\Vector Export_Results. Within this
container, there are several local containers, and each contain an expression (called
Vector_input) linked to several time history elements, one for each of the 19 tracked
cracks (see the following screenshot). Each of the time history elements contains an
option to export results to an external text file. “Export automatically when simulation
completes” should be selected even though the global “Automatic Export for Result
Elements” (see Model, Options tab from the main GoldSim window) may be set to not
export results. If “Export automatically when simulation completes” is not selected, the
results will not export even if the “Export Now” command is requested from the Model,
Options tab.

1] < Container Path: \Time_zeno\Controls%Dashboards_and_Results"\Vector_Export_Results"PND_Cracks_TS

Wl Jwiv vv»‘ W
> > >
VN > WYL LA WA
~n M SN VAT N RV W W PPy ™ P o ~M
Crack Crackz ~ Crackd Crackh Crackd

X A
i NAVAIN AUV AN (V.9
e M e

>

f Cracké Crack? Cra? Crackd
NAY /
>

'r /
y B A N g R B

Crack10 Crack ack12
\ku W Crack1

[Pf;(»

Vector_Input

Localized containers were created in the
\Time_zero\Controls\Dashboards_and_Results\Vector Export_Results folder so that the
desired value could be linked to the new Vector_Input expression elements, one for each
container. Another container (i.e., PND_Crack_TS) was copied, pasted, and renamed. The
new localized containers, old_crack_half_lengths and old_crack_depths, are shown in the
following screenshot.

¢ Corttainer Path: “Time_zero"\Controls\Dashboards_and_Results\Vector_Export_Results

& g T
Crack_Types_TS ThetaOverPi_TS PND_Cracks_TS
[>
2 - B>
Stress_Intensity CT_TS
Half_Crack_Lengths_TS AoverT_TS

&3]

p@»
BT By
Stress_Intensity CE_ TS

Crack_Depths_TS COD_Cracks TS

\s

old_crack_depths

Crack_Orientation_TS

The options for the Vector_Input expression and each of the Crack# time history elements

(i.e., Crack1, Crack2 and so on) were edited in the new containers. It is also necessary ensure
the unmodified crack length and depth values can be passed to the respective Vector_Input
expressions. This requires several steps.

First, for convenience (naming of variables), new data elements were created in the
\Crack_Growth\Crack_Growth_Submodels\Update Crack_ Status folder. These parameters
were added to pass the crack depth and half-length values before the values are passed to the
crackenhancer module.

[ERjEe] SubModel Path: \Update_Crack_Status

[>f ’4"’DLL‘
X
crackdepthenhance crackenhancer
= f
X
cracklengthenhance

.
X X

crack_depth

half_crack_length
> >
X

enhancedcrackdepth

»f»
X

enhancedcracklength

/

old_crack_depth old_half_crack_length

— — —
314 314 314
B> ™ B>l ™ Bliee ™
Updated_Depth Updated_Type Updated_Length

C-13

The old_crack_depth and old_half_crack_length values were exposed outside of the local
Crack_Growth_Submodel. To do this, the values were added to the Output Interface Definition
list in the Crack_Growth_Submodel properties as shown in the following screenshot.

. Crack_Grnmg_Submndels g Crack_Growth_Results

)

SubModel Properties : Crack_Growth_Submodels (Result Mode) | &3 |

Definition | Interface |Graphir_s I Time I Monte Carlo I Optimization I Informaﬁun|

Input Interface Definition

Mame Definition *
| Loop_counter ~LoopCount
1 Inzide_Radius Inzide_Radius =
Thickness Thickness
=igl =igl
=ig1 =ig1 N
sig2 sig2
sig3 sig3
sigs sigs
2igs sigmas

Init_Crack_Type Init_Crack_Type_i[~LoopCount]

Qutput Interface Definition

Mame Result *
Kiwi Final Value
Updated_Depth Final Value
Updated_Lenath Final Value
Updated_Type Final Value N
Ksurf_DLL_Runtime Final Value
Ktwc_DLL_Runtime Final Walue
Grower _sc_Ierr_grw Final Walue E
Grower _twc_IErr_grw Final Value
| old_crack_depth Final Value

‘| old_half_crack_length Final Value ~~ bl

1

[Close] [Help]

The crack length and depth values at this point are only for individual cracks, which are values
for a given realization and timestep. Therefore, the values need to be collected into vectors
containing the 19 cracks being tracked, which are updated for the given timestep/realization.
This step is done for several parameters in the \Crack _Growth\Crack Growth_Results
container, which is also depicted in the following screenshot. To accumulate the individual
crack values for the 19 tracked cracks, the XLPR-GoldSim model authors utilized several
elements (selector elements and discrete change elements with triggers) to update an

C-14

expression vector containing 19 array elements representing each crack value for the
desired parameter.

(] Container Path ack_Growth'Crack _Growth _Resuls|

e T St ey 7

H T
Id_depth_gr old_Crack_Depth old_length_gr vector_old_jggt,h:gmﬁr old_Half_Crack
e
_-/-7

—
—
—
—_—
—

v
depth_gr n lb.f;: &

Growth_Crack_Depth
- 4

vector_old_depth_grower

MNb_cracks_|nitiated_g

]

Reference_distance grower ———_

@ s [l |

Current_Nb_Cracks_g

length_gr addition_length_grower | Growth_Half_Crack_Length
S P ! g
] V'
. . Reference_stress_intensity L dt|> reference_typs_grower
tangent_stress_intensity
S

o
'ﬁt@ Growth Crack Type —

/ Growth_K HH» ' =
@ -
L]

addition_type_grower
normal_stress_intensity Addition_stress_intensity |>f;(2

Growth_Crack_Orientation B 314
% % % % 164

type_gr
Grower ERROR_Codes Crack_Growth_Runtimes

An example for the crack depth is shown in the following screenshots. First, a Selector element,
“old_depth_gr,” was added to ensure the initial crack depth is updated when the crack type is -1
for a surface crack (tracked by the LoopCount, which loops over the 19 respective cracks). In

this case, the updated value is linked to the old_crack_depth value passed from
Crack_GrowthSubmodels.

C-15

@ ¢/@W Fain EE Selector Properties : old_depth_gr (Result Mode) = [B &

- [Definition |
BY,C S ' [T
A » dt old_depth_gr frre e
old_depth_gr vector_old_depth_grower old Crack Depth
m Tyne
B
B % A (o
deptn_gr / / i Then
@ ' ""J-_- |In'rt_Crack_Type_i[~Lnanuunt]>=D Init_Crack_Depth_i[~LoopCount]
. N Init_Crack_Type_i[~LoopCount]=-1 : Crack_Growth_Submeodels.old_crack_depth
T~ Else Thickness
Reference_distance_grower ~——__
—_ ~ i

Final Values Time Histories

| Close | | Help |

Here, two Discrete Change elements are used in conjunction with an Integrator element; the
Discrete Change elements are used to trigger updating of the Integrator element. The Discrete
Change element “vector_old_depth_grower” is used to generate a vector of 19 elements (each
representing a crack). The elements are all zero with the exception of the element
corresponding to the present loop count (i.e., the loop count is used to track the crack index).
The intent is to generate a vector of zeros, except in one entry tracking the property of the
updated crack. The vector (“vector_old_depth_grower”) is then added to another vector

(i.e., the Integrator element, “old_Crack_Depth”) keeping track of the 19 cracks. The sequential
updating produces a vector containing the 19 crack depths for the given timestep. In setting up
this sequence of parameter updating, note there are several parameter options for the Discrete
Change and Integrator elements. As shown in the following screenshot, a Discrete Change
element, “Reference_distance_grower,” is triggered (updated) on a change in the timestep
(etime) and is set to initialize a vector containing 19 elements, all zero. Thus, the value is
calculated (initialized) at the beginning of each timestep. This element is used in the
options/calculation of the remaining two elements, the Discrete Change element
“vector_old_depth_grower” and the Integrator element “old_Crack_Depth.” The Instruction field
is set to “Replace,” and when this event is triggered for a new timestep, the Integrator is reset.

@@ Container Path: ack_Growth'Crack_Growth _Results| Discrete Change Properties : Reference_distance_grower (Result ... | £2 |
Definition
[}ﬁ—y =3 ' —»p dt 3 Reference_distance_arower Appesrance...
]
old_depth_gr vector_old_depth_grower old Crack Depth Reset to zera when time changes
m v
[}ﬁ |vecbur {nb_cracks,0 m)
Replace
depth_gr e
Final Values Time Histories
Define Triggering... Lo |
Define Triggering Events
Tvpe I Trigger Definition I
On Changed || ETime |
For simultaneous events, act once

The Discrete Change element “vector_old_depth_grower” is the vector containing all zeros
except for the entry corresponding to the tracked crack by the loop count. See the following
screenshot for the options of the Value and Trigger settings. The Value entry in Discrete
Change Properties is specified as vector(nb_cracks, if(row=~LoopCount, old_depth_gr, 0 m*
Reference_distance_grower.Follow_this)). This specifies that all of the elements are zero
except the current crack, which has the value from the Selector old_depth_gr. The “Follow_this
command used in the value entry is a special GoldSim command that is used to control the
calculation sequence (GoldSim Technology Group, 2011, p. 304). This value ensures that the
value is updated after the initialization of the “Reference_distance_grower” in the current
timestep. The Trigger setting ensures that the present element is updated during each pass
through the looping over cracks. The value for Instruction is set to “Add” to force an update of
the Integrator element when the Integrator element vector is added to the present vector from
the Discrete Change element, thus updating the crack depth for the present crack/loop iteration.

[I I o, =T Pr Tl Crack_(Growth'\Crack_Growth_Resuks]

old_depth_gr

depth_gr
Reference_distance_grower
—— .

~Jarr

old_Crack_Depth

Discrete Change Properties : vector_cld_depth_grower (Result M... @

Definition

Element 10t

vector_old_depth_grower Appearance...

Cescription: Add the result for this loop to the result element

Display Units: IITI

Discrete Change Definition

Type... |Yector[nb_cracks]

Walue: Ivector(nb_u'acks, if{row=rLoopCount, old_depth_gr, O

Inskruction:| Add

Activation

Save Results

Final Values Time Histories

Close] [Help]

Define Triggering... @

Define Triggering Events

Type Trigger Definition
On Changed || ~LoopCount

For simultaneous events, act once

¥ More [Close] [Help]

For the Integrator element “old_Crack_Depth,” the element is defined as a vector for the

19 cracks. The element should be driven by the Discrete Change elements
“vector_old_depth_grower” and “Reference_distance_grower.” Therefore, these elements are
listed in the “Discrete Change” field for this element (i.e., Discrete Change =
Reference_distance_grower;vector_old_depth_grower).

PR ot e s Al Crack Growth'\Crack_Growth_Results]

@&

old_depth_gr vector_old_depth_grower
depth_gr / /
B> ' -
L]

Reference_distance_grower \‘\
— ~

S

old_Crack_Depth

C-18

Integrator Properties : old_Crack_Depth (Result Mode) @

Definition | Advanced

Element I0:

old_Crads_Depth

Appearance. ..
Descripkion:
Display Units: IITI Type... |wector[nb_cracks]
Definition
Initial Walue: I

Rate of Change: I

Discrete Change: IReference_distancegro'.\'erjvecb:r_old_depih_ |I

Save Resulks

Final Values Time Histories

Close] [Help

The vector expression (tracking the 19 cracks) represented by the Integrator Elements
(old_Crack_Depth” and “old_Half_Crack_Length”) is the vector calculated for the given timestep
of a realization. For convenience, expression elements used in the results were collected in the
\Time_zero\Controls\Dashboards_and_Results\Results container. Following this approach,
expressions for the crack depth and half-lengths were added into this container and linked to the
respective expression elements (“old_Crack_Depth” and “old_Half_Crack_Length”) contained in
\Crack_Growth\Crack_Growth_Results as shown in the following.

1 % Container Path: “\Time_zero“Controls\Dashboards_and_Results"Results /\

»
fv
Crack Types>< ThetaoverF’l Total_COA @f >
X
[% % ﬁ(|>f B old_depth
= X L] L] [}
S X

Crack_Half_Lengths Number_of Cracks_per_Type Total_COD
u I> X I> m

old_half_length
R m

wﬂw—»wﬁ(»

Crack_Depths AoverT f_SurfaceArea_Cracked Expression Properties : old_half_length =]
Definition
> f b
X ElementID: old_half_length arance...
Crack_Qrientation @ﬁ(@ lbﬁ(I> Description:

Critical_Failure_Probability ~ SCFail_Probability 1| Display Units: |m vector [nb_cracks]

IPJC;(> @ﬁ(> pﬁ(S i?jf:T_c--a:<_=~; h

Stress_Intensity

Critical_Failure_Time SCFail Time
Save Results
Final Values Time Histories
3 A
X
SCFail_Probability SSE [ok [canedl |[hep

Critical_Failure_Prob_SSE

> fr P > B

SCFail_Time_SSE

Critical_Failure_Time_SSE

In regard to the elements contained in
\Time_zero\Controls\Dashboards_and_Results\Vector Export_Results, the Vector_Input values
for each localized container (old_crack_half lengths and old_crack_depths) should be linked to
the respective values for crack half-length and depth collected in the
\Crack_Growth\Crack_Growth_Results container as shown in the following screenshot for the
old_half_length.

“Time_zero“ControlsDashboards_and_Results"Vector_Export_Resultshold_crack_half_lengths

Crack Crack2 Cracks3

g Ml B Y o

AR

S B

Crack10

Vector Input
m Cn m

Crack6 Crack’ Cracks Crack9
4

/
m"'

Expression Properties : Vector_Input (Result Mode)

Definition

Element ID: | Vector_Input Appearance. ..

Cescription: old_crack_half_length values

Display Units: IITI Type...

Equation

Yector[nb_cracks]

old_half_length

Save Results

Final Values Time Histories

[Close] [Help

Each of the individual time history elements for cracks 1 to 19 for both containers
(old_crack_half_lengths and old_crack_depths) was modified so that the appropriate vector
element (representing the crack number) was tracked and a file name for the variable data
export was input as shown in the following two screenshots.

C-20

"X‘ X.M,m.m o WV
raadd sl Bava% ~
Crack13 _ Crack1d Cr/{ck15/ /d/
5] 5] Cragkl Crack Crac Crack19
4 A Cracly¥
Time History Properties : Crackl4 @
Time History Result | Expart to Text File {Table Format) |
Description:
Realization(s)
\ / 100 realizations selected. Select Realization(s). .
Data Axes Definition
S f - Left Y-Axis Left ¥-Axis Display m
X
Right Y-Axis Right -Axis Display
Vector_Input
Input(s)
) Unit Y2
1 | Vector_lnput14] m D
[Add Input][Delehe I.nput] Select Array Items... [show full path
Display Table Export Results To: [nSCHTextFiIe (Table Format) v]
[Disable Element (result displays will be unavailable in Result Mode),
[OK. H Cancel H Help]
Cracko Lrackf Cracko Cracky
} = s A
o PNl IS M B R B
eaadd Ea'ad il Bava% ~A
Crack13 _ Crack14 Cr/ck15/ /d/
5] 5] 5] Cracgk1 Crack Crac Crack19
4 A Cracy¥

Time History Properties : Crackl4

Time History Result | Export to Text File (Table Format) |

Select Data to Export
Data Histories
[statistics Histories

Select Statistics...

Status: 1 dataitems
0 statistics per data item
361 time points
100 realizations
Qutput File

>

Vector_Input

Text File:

GSxLPRv1.02_old_crack_half_lengths_014.txt

Export automatically when simulation completes

[Confirm before overwriting contents of an existing file

Export Mow

J

[OK] [Cancel Help

C-21

Finally, the new exported parameters must be added to the Variables_List.txt input file for
post-processing. As shown in the following screenshot, the file names for all of the exported
variable values were added to the variables_list.txt document.

EDIT FILES

POST PROCESSING OPTIONS Framework Users Guide

""
|

ijariables_list.bct—Notepad [= =][==
File Edit Format VWiew Help .
TET_001. txt -

old_crack_half_lengths_001.Txt
old_crack_half_lengths_002.txt
old_crack_half_lengths_003.txt
old_crack_half_lengths_004. txt
old_crack_half_lengths_005.txt
old_crack_half_lengths_006. txt
old_crack_half_lengths_007.txt
old_crack_half_lengths_008. txt
old_crack_half_lengths_009. txt
| old_crack_half_lengths_010. txt
old_crack_half_lengths_011.txt
)] old_crack_half_lengths_012.txt
i old_crack_half_lengths_013. txt
old_crack_half_lengths_014.txt
old_crack_half_lengths_015.txt
old_crack_half_lengths_016. Txt
old_crack_half_lengths_017.txt
le old_crack_half_lengths_018. txt
old_crack_half_lengths_019.txt
old_crack_depths_001.txt
old_crack_depths_002. txt
old_crack_depths_003. txt
old_crack_depths_004. Txt
old_crack_depths_005. txt
old_crack_depths_006. txt
old_crack_depths_007.txt
old_crack_depths_008. Txt
old_crack_depths_009. txt
old_crack_depths_010. txt
old_crack_depths_011.txt
old_crack_depths_012.txt
old_crack_depths_013.txt
old_crack_depths_014. txt
old_crack_depths_015.Txt
old_crack_depths_016. txt
old_crack_depths_017.txt
old_crack_depths_018. txt
old_crack_depths_019.txt

m

4 [

Implementing the CrackEnhancer Module Into the XLPR-SIAM Framework
The following details the steps taken to implement the module.

1. First, it was necessary to add the new crack enhancement parameters to the framework.
To do this, the model implementation requires several substeps:

C-22

The XLPR-SIAM framework uses a database file (several are contained in the project
files) to maintain persistence of parameter values. The database files are in Berkeley
database format and contain a key entry for the realization number as well as the
associated realization python object, which contains parameter values and objects for
the realization (i.e., the crack container with crack objects, which contain the various
crack specification parameters).

After careful analyses, it was decided that the best place to insert the additional
parameters would be as parameters in the crack container.

A class diagram for the Pipeweld class is shown in the following, as excerpted from
Klasky, et al. (2010a, Figure 38).

SIAM-PFM PipeWeld Class — XLPRVariare
ELPRVarlable - variable ariable
—ncrrtaiyiyyne: Framratin « [licesinty CONSTAUT | lineorisinty FPISTFMIC |
name String U oty ALEATER]
-__welue:Flast - - ilstnbuto'\hame String e R
dependent: Beclean = Fak . Faramelns = Lt Fuals
rh-nl-rﬂtl-n-v Jeps nrimnd\hrahlrtﬁ DependenceViarlable - IruzfnPl}F stipy.staks, v frazen
urits:String =
" deperdenselnita; Siring = [—
" - snammelrils: String
& Deln-‘r:lk:rcr;\?‘:n";amec m.:;,mc depencent=false, T Catases: Lsttupetisty - QRRV‘G:CIE}ME:'!LC uneertantyType, distribution=Etring, Schapss=:uple, **pamme=dizt)
+ getiame [Siring - deoendentFunction: v = fx) - welBis Mo {1, 5
+ getlni} : String + init [=df, namelnits, xname, dataSet=None, - etDisrType (3 Strin
+getu’aller] dﬂuntd omfant B ds Dcnd:n\Fumtiun Honel gngl?;Pa':e:rrs [\‘ILlstl loas)
cpardeiialue] «=feat): Aot + get¥namel); String - get oat }: Float
+I==D Dendent{} Booleal + get¥namelinits}: String = uelCOF { & . Aoal} . Floal
=1L b Lyl Lih -+ getham(); List tuphe{Acat)) —ydPDF (2, Fual} . Fkaol
¥ Settarn efSiring) : | qeifunction!): function - se:DissType { String | < void
+5gt|Jn|L_{ﬂumg \uéd - + s:t:Dat id \ ’ el DIEJ’PEI'GITL-I’ llsn Flaatsl ¥ void
+ st oat) = woi -+ catFur far) 3 el
+ gt -able{ D denzelisriable): void + s 1), Thoa.
-+ evaluze (»; Figat); Ficat
' Cracks
- crackID:int = 0
| CrackContainer _c:::p-zzn;:r r;g[rnTlr--.r_dl 2!nf‘;1]—k S| TWE | T = dalrark'
- __numberCracks: irt =0 - inibalCrackDepth: KLPRVariabla(iriDepth’, 1.0, 'mm’)
PpeWeld - cracks: list [Cracks] - TinitalCracklength: XLFRVariablel' |1|l_|:ngth 10, nm)
A -~ CrackDepth: XIPRVarizbielderttr. 1.0 imm)
__crackLength: ALPRVarble’ Icnud'\ L., mm’))
a0 - pre—r ;::E%;f:rﬁ:uﬁl'p?;abgtnnm , 0.0, radians”,
- 7 innerDiame:er: XLPRVariaber nnu'Dlem 10 IT\T\ " -
__weallThidkness: KLPWariablel "wallThick!, m') - _leaxRate. ¥LPRVar abl
—sracks: Cr: ad*Cu"ta"w‘) o) + pulticOpe aton ||l.- wlist. |L¥ Type
| - privai i)
~ T weigProperties: WedMaterialpraperties)) privatefiperaiion farc): returdType

+ publicOperation (arg ist): retumn™ype
- pruatelperation (arg): retureType

BaseMaterialProperties

+ publicOzeration (arg list): retumTyoe
priveteCperstion (am}: returnType

+ pubicOperation (arg list): returnType
- privateOperation (arg): mtumTyse

The CrackContainer is part of the PipeWeld class and contains all of the crack objects
and their associated parameters (i.e., length and depth). The PipeWeld class is
contained in each realization object; these are imported from the database by the
realizationController during running of the model (controlled by xLPRController).

a. Adding the crack enhancement factors to the crack container object required
minimal effort. To do this, the parameters were added to the source code
defining the CrackContainer class that is contained in the file:
./src/model/CracksModule.py. The parameters were added using the following
source code entry in the CrackContainer class definition.

C-23

NOTE: Here adding definitions for crack enhancement

parameters.

Zcracklengthenhance

means=
args=
args.
.append('nondim')

args
kwds

self.
self.
self.

self

999;stdv=9
[1

append(mean)

= variateDao.createUniformvariate('Zcracklengthenhance', mean, stdv, args[l], 'epistemic')
Zcracklengthenhance = xLPRVariate(*args, **kwds)

Zcracklengthenhance.setReqdUnits ('nondim')

Zcracklengthenhance.setUnitsType ('nondim')

.Zcracklengthenhance.setDescription('A custom parameter to enhance crack length values')

cracksizeenhance

mean=
args=
args.
args.

kwds

self.
self.
self.

self

888 ;stdv=8

[1

append (mean)

append('nondim')

= variateDao.createUniformvVariate('Zcracksizeenhance', mean, stdv, args[l], 'epistemic')
Zcracksizeenhance = xLPRVariate(*args, **kwds)

Zcracksizeenhance.setRegdUnits('nondim')

Zcracksizeenhance.setUnitsType ('nondim')

.Zcracksizeenhance.setDescription('A custom parameter to enhance crack size values')

Zcracksizeenhance in the previous source code is the parameter used for
enhancing the crack depth.

This step was particularly straightforward due to the predefined xXLPRVariate
class (part of the data structure developed for the XLPR-SIAM framework). Once
added into the crack container, the variables of type xLPRVariate are initialized
and are saved to the database project file when the program is run. However, to
adjust the parameter values, the variables must be added to the display on the
graphical user interface (GUI) to permit user interaction and adjustment of the
parameter values.

b. The next task required for adding the crack enhancement parameters was to add
the crack enhancement parameters to be displayed on the GUI so that users can
update/adjust parameter values. This modification requires some additional
knowledge of PyQT and can potentially be complex depending on the nature of
the changes needed. The XLPR-SIAM source code along with Summerfield
(2007) was used to determine what adjustments would be needed to add the
parameter interface to the GUI.

It was decided the easiest place to add the variable to the XLPR-SIAM GUI

interface would be to the list of parameters provided in the “Crack Initiation and
Growth” tab, as in the following screenshot:

C-24

¥+ SIAM-PFM xLPR - Project: testfilesize 121510

=) E

Praject Explorer
4 9 CASIAM_XLPR .
Bannerhitm,
9 docs
SIAM bat
SIAM_32new]
SIAM_xLPR
release.tit
run.pyw
& sc

> 9 testfilesize]

Problem Setup | Material Properties kCradenihahon and Growth) Operating, Loading, and Mitigation

In-Service Inspection (151) | Post-Frocessing Gptions

Execution

Variate Name Description Value Units Uncertainty Distribution Shape Location Scale Lower Upper Comrelated with *
1 grower alpha reference alpha parameter for PWSCC growth model 201e12 nondim constant constant 0 0 0 . Not Correlated
2 grower_beta reference beta parameter for PWSCC growth model 16 nondim constant constant 0 0 0 . Net Correlated
3 grower_ch2 & characteristic width of crack growth rate curve 25 my dleatory norm 0 25 321 0 . Net Correlated
4 grower fweld £ weld: weld fabrication factor 08989 nondim epistemic lognorm 1835 0 08989 271 Not Correlated
5 grower_h2 concentration of hydrogen in primary water 25 cm™3/.. constant constant 0 0 0 . Net Correlated |
6 grower_kth reference k threshold parameter for PWSCC growth model o nondim constant constant 0 0 0 . Not Correlated
7 grower p peskto valley ratio 95 nondim aleatory norm 0 95 136 0 . Not Correlated
8 grower_qoverr reference Q/R for PWSCC growth model 1564e.. K sleatory norm 0 1564e. 601 0 . Net Correlated
9 grower_tref reference temperature Tref for PWSCC growth medel 598.1 K constant constant 0 0 0 . Not Correlated
10 grower_zinc concentration of zinc in primary water 0 cm*™3. constant constant 0 0 0 . Not Correlated
11 initiation_A A: Heat to heat - Method 1 median - within heat sampling |~ 3163 nondim epistemic lognorm 116 0 3163 . Net Correlated
12 initiation_AWH_Stdev geometric stdev for within heat Method 1 2915 nondim constant constant 0 0 0 . Not Correlated
13 initiation_AWHO Methad 1 - quantile for median within heat (lognormal) 05 nondim epistemic uniform 0 0 1 . Not Correlated
14 initiation_B1 Bl: Heat to heat - Method 2 median - within hest sampling 12e-09 nondim cpistemic lognorm 1,607 0 1209 . Net Correlated
15 initiation_B1WH_Stdev geometric stdev for within heat Method 2 1.742 nondim constant constant 0 0 0 . Not Correlated
16 initiation_B1WHO Methad 2 - quantile for median within heat (lognormal) 05 nondim epistemic uniform 0 0 1 . Not Corelated _
< 3
| SI Units | | View Distribution ‘ Case Database: Casel.dbm | Browse... ‘ | Save | | Reset to Defaults

To add the parameter to this tab, it is important to understand how the
developers added variable values to the GUI display. When the XLPR-SIAM GUI
is running, the parameter values are updated from the database project file and
loaded into the Qt widgets for display (i.e., the tabbed lists of data). The
parameter values displayed in the tabbed panes are generated by filtering lists of
the variables contained in the database file.

The process is done in the following manner for the “Crack Initiation and Growth”
tabbed pane parameter entries. The GUI is initiated when the
SIAM_MainWindow.pyw python code is run (./src/view/SIAM_MainWindow.pyw).
Upon loading or creating a project file, the main loop (the main loop for the Qt
GUI) sets the file name from user input and then calls the xLPRModule() (a
method defined in the SIAM_MainWindow.pyw file).

This method in turn calls the class object xXLPRDIg(args.), which is the
Isrc/view/customviews/TableVariateViewModule.py class VariateTableView.
This object contains methods that handle a number of operations (e.g., loading
and saving variables, linking to post-processing) used by elements of the GUI
contained in the tabbed panes (i.e., the tabbed panes in the previous
screenshots). Most importantly for the current task, the class has a method for
creating tabled lists of variables (i.e., tables of parameters): createView. This
method contains parameters to specify options for the table of parameters object.
The method uses an imported class VariateTableModel, which is defined in the
file ./src/view/model/TableModelViewModule.py, to create the actual Qt table of
parameters object (the Qt table widget). This class contains several methods
that are used to order and display the data set contained in the table

[e.g., loading data values from the database file, handling setting data entry
values, parsing and creating lists of variables (epistemic, aleatory, constants),

specifying the column entries (‘Value,” ‘Uncertainty,

Distribution,’ ...), and

sorting based the row order based upon selection of a particular column
parameter.] The important part of this class is that a filter is applied to retrieve

C-25

variable values. In particular for the variables displayed on the “Crack Initiation
and Growth” tabbed pane, the values are filtered using the filterFlag ‘initiation.’
This section of the source code (./src/view/model/TableModelViewModule.py) is
near the comment entry (starting near line 623).

if self.filterFlag == 'all':
self.variates = self.combinedVariateList

elif self.filterFlag == 'initiation':
for var in self.combinedvVariateList:
name = var.getName ()
gname = QString(name)

if gname.startsWith(QString('initiation'), Qt.CaselInsensitive):
self.variates.append(var)

elif gname.startsWith(QString('grower '), Qt.CaseInsensitive):
self.variates.append(var)

#elif gname.startsWith(QString('cod_'), Qt.Caselnsensitive):
#self.variates.append(var)

elif gname.startsWith(QString('Zcrack'), Qt.Caselnsensitive):

self.variates.append(var)

The additional “else if” statement is added to parse the variable name to check
matching to the string pattern ‘Zcrack.’ If true, the variable is appended to the list
of variables to be included in the table. This ensures that the newly added
parameters Zcracksizeenhance and Zcracklengthenhance are included in the
parameters displayed in the table for the “Crack Initiation and Growth” tabbed
pane. Optionally, the use of a new filter is not explicitly required. For example,
the parameter name can be selected such that it will be filtered to appear in the
tab (i.e., “initiation_cracklengthenhance” could have been selected. In this case,
there would be no need for an addition to the source code. A screenshot of the
tabbed pane containing the added parameters follows.

C-26

Problem Setup Material Properties Crack Initiation and Growth ‘ Operating, Loading, and Mitigation In-Service Inspection {ISI) | Post-Processing Options Execution
Variate Mame Description Value Units Uncertainty Distribution Shape Location Scale Lower Upper Correlated with =
13 initiation_AWHD Methad 1 - quantile for median within heat (legnormal) 0.5 nondim epistemic uniform 0 0 1 Mot Correlated
14 initiation_B1 Bl: Heat to heat - Method 2 median - within heat sampling 1.2e-09 nondim epistemic legnorm 1.607 0 1.2e-09 Not Correlated
15 initiation_BIWH_Stdev geometric stdev for within heat Method 2 1742 nondim constant constant 0]] Mot Correlated
16 initiation_B1WHO Methed 2 - quantile for median within heat (lognormal) 0.5 nondim epistemic uniform 0 i} 1 Mot Correlated
17 initiation_C1 parameter for Method 3 0.04 nondim constant constant 0]] Mot Correlated
18 initiation_crack_dept... initial crack depth 0.0015 m aleatory norm 0 00015 7.5e-05 0 Mot Correlated
19 initiation_crack_half_l... initial crack half-length 0.003 m aleatory norm 0 0,003 0,00015 0 Mot Correlated
20 initiation_goverr reference Q/R for PWSCC initiation module 2.2e+04 K constant constant 0 i} i} 0 Mot Correlated
21 initiztion_RandU30 RandU3: Method 3 - initiation time sampling 0.5 nondim aleatory uniform 0 Q 1 Mot Correlated
22 initistion_RandULocd random number sampled for use in crack placement 05 nondim aleatory uniferm 0 1] 1 Not Correlated
23 initiation_SigTH SigTH: threshold stress for Method 1 1378 MPa constant constant 0 1] 1] Mot Correlated
24 initiation_subunits number of circumferential subunits in weld 19 nondim constant constant 0 (i} (i} Mot Correlated =
25 initiation_XMN1 parameter for Method 1 4 nendim constant constant 0 [i] [i] Mot Correlated
26 initiation_XMN3 parameter for Method 3 4 nondim constant constant 0 (i} (i} Mot Correlated
27 Zcracklengthenhance A custom parameter to enhance crack length values 999 nondim epistemic uniferm 0 999 g Mot Correlated
28 Zcracksizeenhance A customn parameter to enhance crack size values 888 nondim epistemic uniform 0 88 8 Not Correlated s
d m G

From this interface, the values for items such as parameters and distribution type
can be adjusted and saved to the database using the existing XLPR-SIAM
framework structure.

The next step in implementing the crackenhancer module is to select the appropriate
location to add an interface to the external FORTRAN module.

a.

This was relatively straightforward as all FORTRAN modules use a common
model interface through the TimeLoop module. The TimeLoop module is a
FORTRAN code that is compiled with a FORTRAN to python (f2py) wrapper.
The wrapper exposes selected subroutines and variables to python. In
XLPR-SIAM, the parameter values for the TimeLoop module are set (passed) in
the TimeLoopServiceModule (./src/service/TimeLoopServiceModule.py). In the
next step, code was added to the TimeLoopServiceModule so that the values for
crack enhancement parameters can be passed to the TimeLoop and, ultimately,
a crack enhancement module.

For a given realization, all parameter values needed are loaded into the
TimeLoop module (initialization block) and subsequent calls to the external
modules follow the order and logic detailed in the xLPR Timeloop Flow Chart
shown in Figure C-1, as excerpted from Klasky, et al. (2010b).

C-27

I XLPR Time Loop Flow Chart

Initializa all module input
/I..:.; ,,;n_\ 4 arrays with data from Glossary
realization record. §C = Surface Crack

. - Check ta sez an inspaction TWC = Through-Wall Crack
l fetsfmine I tation times and/or mitigation will occur €OD = Crack-Opening displacement
W with or without mitigation, during this time step. If et el B e L L
Craé:kllnitiation 1 placement of cracks, and total mitigation has occurred, apply LOCA = Loss-of-Coolant Accident
and Placement number of cracks that will iti i
Module nHiats for this realization. mitigated weld residual stress.
Loop over all active-cracks and
check criticality of ST and WC. Inspection Module:
Unstable SC transitions of WC. Loop aver all active
Unstable TWC fails the weld. SCs and calculate
POND and
Serhaig o isCetected?
Number of Criticality T
Active Cracks Module /
I = A i .
Determine if
Mitigation and/or (& oy scFFail ™ [nol Inspection
nspection Tim - Critical? Module
~ .~ Jnol
5 @ Yhnal £
/ Loop overall active
3 cracks and call ksurf Crack Growth Hecord Probabili
lyes] or ktwe before call Module wprgﬁb%%tﬁcﬁg’"
ta grower. Chack for e Stap
transition to TWC
due to growth. 2
Crack COD Module: calculate
Coalescence S crack-opening
Checktosee if any Module (coD >/ displacement for TWC
cracks initiate for Module
this time step.
Place an: ‘ Leakage Rate
Loop over all active Initiated Module: calculate
cracksand check for Crack for this i laak rate for TWC BecordTime of
coalescence. Coalesced me:step LeaMK:giEate { SC Detection ’
cracks becomg inactive
and new combined
cracks are resized and Crack Coalescance
relocated. Module (if new
crack initiated) eak > RecodTime of
OCA LimitZ Leak Detection
v <
Exit Recard L [ne]

Time Loop Failure Time

Continue

{ TimeLoop)¢

Figure C-1. The xLPR TimeLoop Execution Diagram Excerpted From
Klasky, et al. (2010a)

C. The crack enhancement module was added to the TimeLoop module sequence
following the Crack Growth Module and before Crack Coalescence. The call
to the crack enhancement module was added to the TimeLoop_V2.1.f90
source code.

The next step was to add the new crackenhancer module and interface for the
parameters. This requires several substeps.

a. To pass the variables to the timeloop module, the crack enhancement parameter
values must be passed to the timeloop module. The newly inserted variables in
the timeloop module (TimeLoop_v2.1.f90) were named zcracklengthenhance and
zcracksizeenhance. At run time, the module is loaded as a timeloop object. The
variable values are passed in the TimeLoopServiceModule. The following was
added to the TimeLoopServiceModule code:

C-28

ADDED TO ./src/service/TimeLoopServiceModule.py:

Load Zcracklenghenhance and Zcracksizeehance into timeloop module
timeloop.zcracklengthenhance = CC.Zcracklengthenhance.getValue ()
timeloop.zcracksizeenhance = CC.Zcracksizeenhance.getValue ()

b. The parameters were added to the timeloop module source code. Input and
output handling arrays were also defined for passing from the timeloop module
and calling the crackenhancer module. Further, the call to the crack enhancer
module is made. The following code was added to the TimeLoop_v2.1.f90
source code (notes are indicated to show the location in the source code where
the additions were made).

ADDED TO TimeLoop_v2.1.f90:

Adding crack enhancement variables to the global namespace for the module timeloop.
An additional output file is added and called for debugging and verifying
parameter values.

! Adding variables for zcracklengthenhance and
! zcracksizeenhance

real (8) :: zcracklengthenhance

real (8) :: zcracksizeenhance

! adding a debugging filename (this should be commented out, just for
! testing verifying

CHARACTER (len=32) :: filename

Adding debug output to TimeLoop v2.1.f90 subroutine write timeloop input log in order to
verify passing of variables and maintain consistency with logging of variables.

subroutine write timeloop input log(f log)
implicit none

character (LEN=*), intent(in) :: f_ log
integer :: icrack, ierr, i
real (8), external :: get lognorm g

f2py intent (in) £ log
open(unit=10,file=f log,status='UNKNOWN',position='APPEND', &
action='WRITE', iostat=ierr)

write (10, "' (// "' *kkkkkkkhhkhhhhkhhhhkhhkkhkhhkkhkkhkhkhkhkhkkhsx 11) 1)

write (10, ' ('' Input Data for Realization '',a6)') realization key(1:6)
write (10, ' ('' Realization Key = '',a20)') realization_key
Write(lo,‘(“ khkhkhkhkhkdhkhkdhhkhkhkhkhkhkdhhkdhkhhhkdhhdhkdkhkhkhhrdkhrdhdhhhd ||)|)
write (10, ' (/' ---cccmmmm e)

write (10, '(''MOD - Enhancement factors tryn)

Write (10, ' ("' —-m e oo teyn)

write (10, ' ('' zcracklengthenhance = '',ES12.5)"') zcracklengthenhance
write (10, ' ('' zcracksizeenhance = '',ES12.5)"') zcracksizeenhance

Adding input and output arrays for call from timeloop module to custom crackenhancer module
in timeloop subroutine run().

C-29

lmmmmmm e e e - ! Interface
real (8),dimension(2) :: in crackenhancer
real (8),dimension(1) :: out_crackenhancer

Initialize the input and output arrays in timeloop subroutine run().

(1) = zcracklengthenhance
in_crackenhancer (2) = zcracksizeenhance
in_crackenhancer(3) = 0
in_crackenhancer (4) = 0
out_crackenhancer(l) = 0
out_crackenhancer(2) = 0

Opening the additional output file for debugging and verifying parameter values.

! Opening debugging file

filename='crackenhancerdebug. txt'

open (unit=101,file=filename, status="'UNKNOWN' , position='APPEND', &
action='WRITE', iostat=1ierr)

Write (101, ' (// 1" *kkkkkkkkhkkkhkkkkkkhkkkhkkhhkhhkhkkkkkkkxs 11) 1)

write (101, ' ('' Input Data for Realization '',a6)') realization key(1:6)
write (101, '('' Realization Key = '',a20)') realization key

wWrite (101, ' ("' *kkkkkhkkkhkhkhhhhhkhhkhhkhhkkhkkkhkkkkkkks 11) 1)

write (101, ' (/' —---- s e oo te)yn)

write (101, '(''MOD - Enhancement factors tryr)

write (101, ' ("' —--mmm e e))

write (101, ' ('' zcracklengthenhance = '',ES12.5)') zcracklengthenhance
write (101, ' ('' zcracksizeenhance = '',ES12.5)') zcracksizeenhance

The call to the crackenhancer module is made following grower. The call to the crack
enhancement module is made only if the crack type is set to the value of -1 for a surface crack,
consistent with the same call made in XLPR-GoldSim.

if (crack_ctype(icrack) .LT. 0) then
call grower(method, state, in_grower, out_grower)
time grower = time grower + out grower (1)

a = out_grower (2) ! crack depth [m]
c = out_grower (3) ! crack half-length after grower [m]
error _grower = int (out_grower(4))! error flag [-]

! load current values into crackenhancer input vector

in crackenhancer (1) = zcracklengthenhance
in_crackenhancer (2) = zcracksizeenhance
in_crackenhancer (3) = a ! crack depth [m]

in crackenhancer(4) = c¢ ! crack half-length after grower
write (101, '('' Crack Initiated = '',112)') icrack

write (101, '('' a before = '',ES12.5)"') a
write(101,'('' c begore = '',ES12.5)"') ¢

if (crack ctype(icrack) .EQ. -1) then
call crackenhancer(in crackenhancer, out_crackenhancer)
endif
! update a and c values
a = out_crackenhancer (1)
¢ = out_crackenhancer (2)
write (101,'('' a after
write (101,'('' ¢ after = '',ES12.5)")

1
=
%)
o
S
u

! surface crack (SC) becomes a thru-wall crack (TWC) by growing
! through the wall

if (a .GT. thickness) then

C. The source code for the crack enhancer module is similar to the source code
used on the version for XLPR-GoldSim (the calculation is the same); the
difference between the source code used for XLPR-GoldSim and XLPR-SIAM is
the additional logic statements required for the XLPR-GoldSim version to interact
with GoldSim. The source code for the XLPR-SIAM crackenhancer version
follows (also see file crackenhancer_v0.1_XLPR-SIAM.f90):

! This is a simple add-on module to test the complexity of adding an
! addtional module to SIAM xLPR. The purpose of the module is to
! multiply crack length and crack depth values by the respective
! enhancement factors.
Subroutine crackenhancer (in, out)

implicit none

real (8) ,dimension(4) :: in

real (8), dimension(2) :: out

real (8) :: retavalue = 0

real(8) :: retcvalue = 0

real (8) :: cracklengthenhance = 0

real (8) :: crackdepthenhance = 0

real (8) :: crackdepth = 0 ! crack depth [m]
real (8) :: crackhlflen = 0 ! crack half-length [m]
real (8), dimension(2) :: outvector
crackdepthenhance = in(2)
cracklengthenhance = in(1)

crackdepth = in(3)
crackhlflen = in(4)

retavalue
retcvalue

crackdepthenhance*crackdepth
cracklengthenhance*crackhlflen

out (1)
out (2)

retavalue
retcvalue

end subroutine crackenhancer

4, The last step is compiling the implementation with the crack enhancement module. To
do this, the source code for the timeloop module, along with the crackenhancer module,
was compiled. For the interface to python, the timeloop module needs to be compiled as
a PYD (python dynamic file) using f2py, the FORTRAN-to-python interface generator
program. A wrapper file is needed to generate the pyd file with f2py. This can be
generated by hand and/or automatically using f2py. The authors of XLPR-SIAM have
added an additional FORTRAN-to-Python utility (f2py utility) to facilitate making the
necessary calls to f2py.

a. The FORTRAN source code files were compiled as normal. This can be done
from the command line or by using the f2py utility.

C-31

b. The process for building a wrapper is detailed in Klasky, et al. (2010b) (see
Chapter 4) and was followed exactly.

C. When attempting to create the wrapper file (i.e., compiling the wrapper file), the
process failed on the local machine. The following error output was observed in
the captured output in the f2py GUI interface:

c:/gcc/bin/../lib/gccl/i686-pc-mingw32/4.5.1/../../1..1../i686-pc-mingw32/bin/ld.exe:
cannot find -Imsvcr71
collect2: Id returned 1 exit status

d. The wrapper can be built manually from the command line using the f2py
configuration file (pyf) (as generated from the f2py Utility). The Imsvcr71 flag
may be the cause of the problems on the test system. Because the compilation
command call (and flags) is hardwired into the f2py Utility and cannot be
deselected, the compilation was done manually from the command line. To
compile the PYD wrapper, the following command and flags were used:

c:\python26\python.exe c:\python26\scripts\f2py.py --

verbose --fcompiler=gnu95 --compiler=mingw32 -c
TimeLoopSignature.pyf Coalescence... <list of .£90 files> ..
.£90

This issue could be a problem with the local system setup. However, the issue
for the local machine has not been explored further. Test runs of the f2py Utility
on several other systems appear to work without this issue for recompilation of
the original installation files.

The compiled PYD file is the ./src/service/temp directory. This is a temporary
directory that is created by the f2py Utility. When the “Commit Wrapper to
Service Layer” is selected, the compiled PYD file is copied from this directory and
used to write over the TimeLoopWrapper.pyd file in the

Isrc/service/timeloop directory.

To fully assess the flexibility of the frameworks for exposing of parameter values for
output and post-processing, an additional task was performed to expose the crack
half-length and depth values before modification by the “new” crack enhancer module to
external logging and post-processing. The process is detailed as follows.

In XLPR-SIAM, parameter data are exported for post-processing by opening hard-coded
data streams to write to external text files during the program execution for all
realizations. The initial data stream links to external text files are initiated in the
RealizationsControllerModule where calls are made to the ./src/utils/XLPRTools.py
method createWriteOnlyTextFile to create data streams to external files for appending
parameter values at each timestep for all realizations. Note that the streams used for
this purpose in XLPR-SIAM are Qt objects (i.e., Qt.QFile and Qt.QTextStream). When a
realization is run through the timeloop module, arrays are defined to collect the
parameter values for each timestep. When the realization completes, the values are
passed back to python and then written to the file streams in the
TimeLoopServiceModule at the end of each realization.

C-32

To add/expose new variables for post-processing, the source code for several files must
be edited. Additionally, the timeloop module must be edited and recompiled as a PYD
file. The steps required to expose the crack length and crack depth values (before
modification by the crackenhancer module) are detailed next.

Data dictionaries are used to pass and recall file stream objects, are created in
src/controller/RealizationsControllerModule.py, and are also called/used to update
values for each realization in ./src/service/TimeLoopServiceModule.py. First, the
file/stream objects must be created.

When the TimeLoopServiceModule method executeTimelLoop is called (running a
realization), the stream dictionaries are passed to the method. To implement these
changes, the following code was added to the
.src/controller/RealizationsControllerModule.py file (note the edits are excerpted from
the file with several lines of code removed; newly added code has been highlighted).

< Here, a number of lines of code are omitted. >

def createOutputDataDict (self, numE, numA, pipeWeld, loadContainer) :

create dictionaries that contain arrays of output data for post-processing

wun

numTimeSteps
self .numTimeSteps

=
determine array sizes
$===
self.numE = numEk

self.numA = numA

self.tfinal = loadContainer.tfinal.getValue ()

self.time_step = loadContainer.time step.getValue()

int (self.tfinal/self.time_step)
numTimeSteps + 1

f===
load into dictionary
Boooooooooooooooooooooooooo—oooooo————o———o———————————————————————======
self.output_data dict['depth'] =3

self.output data dict['half length'] =3

self.output data dict['old depth'] = 3
self.output data dict['old half length'] = 3

self.output_data dict['surfk0'] =3

self.output_data dict['surfk90'] =3

self.output data dict['pnd'] =3

self.output_data dict['leakrate'] =3

self.output_data dict['coa'] =3

self.output data dict['FracArea'] =1

self.output_data dict['total leakrate']l =1

#self.output_data_dict['SC time'] =1
self.output_data dict['FirstLeak']
self.output data dict ['Rupture']
self.output data dict['Rupture SSE']
self.output_data dict['FirstInit']
[
[

self.output_data dict['COAl']
self.output data dict['COA3']

< Here, a number of lines of code are omitted. >
< In method def createExecuteRealization >

create dictionaries to hold IO QTextStreams
provide for first 3 initiating cracks

self.stream dict depth = {}
self.stream dict old depth = {}
self.stream dict half length = {}
self.stream dict old half length = {} # Custom tracking for non-modified half length
self.stream dict_ surfko =
self.stream dict_surfk90 =
self.stream_dict_coa =
self.stream dict leakrate =

Custom tracking for non-modified crack depth

P ——
e

for i in range(19):

icrk = "%03d" % (i+1)

pnd_ fname = "pnd " + icrk + ".txt"

ctype fname = "ctype " + icrk + ".txt"

(stream_pnd, fh pnd) = Tools.createWriteOnlyTextFile(pnd fname,
self .postPath, prefix)

(stream_ctype, fh_ctype) = Tools.createWriteOnlyTextFile(ctype_ fname,
self .postPath, prefix)

self.stream dict pnd[pnd fname] = (stream pnd, fh pnd, pnd_fname)

self.stream dict_ctypel ctype fname] = (stream ctype, fh ctype, ctype fname)

for i in range(3):

icrk = "%03d" % (i+1)

depth_fname = "depth_ " + icrk + ".txt"

old_depth_fname = "old_depth_" + icrk + ".txt"

half length fname = "half length " + icrk + ".txt"
old half length fname "old half length " + icrk + ".txt"
surfk0_fname = "surfko_" + icrk + ".txt"
surfk90_fname = "surfkoo_" + icrk + ".txt"
coa_fname = "coa " + icrk + ".txt"
leakrate_ fname = "leakrate " + icrk + ".txt"
(stream depth, fh depth) = Tools.createWriteOnlyTextFile(depth fname,
self.postPath, prefix)
(stream old depth, fh old depth) = Tools.createWriteOnlyTextFile (
old depth fname, self .postPath, prefix)
(stream half length, fh half length)= Tools.createWriteOnlyTextFile (
half length fname, self.postPath, prefix)
(stream old half length, fh old half length) = Tools.createWriteOnlyTextFile (
old half length fname, self.postPath, prefix)
(stream_surfko, fh_surfko) = Tools.createWriteOnlyTextFile(surfkO_fname,
self.postPath, prefix)
(stream_surfkoo, fh surfkoo) = Tools.createWriteOnlyTextFile(surfk90_ fname,
self .postPath, prefix)
(stream_coa, fh coa) = Tools.createWriteOnlyTextFile(coa_fname,
self.postPath, prefix)
(stream_leakrate, fh leakrate) = Tools.createWriteOnlyTextFile (
leakrate fname, self .postPath, prefix)
#print ("1 = ",1)
#print ("stream old depth: ",stream old depth)
self.stream dict_depth[depth fname] = (stream depth, fh_depth,
depth_fname)
self.stream dict old depth[old depth fname] = (stream old depth,
fh old depth, old depth fname)
self.stream dict_half length[half length fname] = (stream half length,
fh half length, half length fname)
self.stream dict old half length[old half length fname] = (stream old half length,
fh old half length, old half length fname)
self.stream dict_surfkO[surfkO_fname] = (stream surfko, fh_surfko,
surfk0_fname)
self.stream _dict_surfk90[surfk90_ fname] = (stream surfk9o0, fh_surfkoo,
surfk90_ fname)
self.stream dict coal coa_ fname] = (stream coa, fh coa, coa_ fname)
self.stream dict_leakrate[leakrate_ fname] = (stream leakrate,

fh leakrate, leakrate_ fname)

C-34

< Here, a number of lines of code are omitted. >

TimeLoopService.executeTimeLoop (trialObject, self.debug, self.deterministic,
self.stream dict,
self.stream dict pnd,
self.stream dict_ctype,
self.stream dict_other,
self.stream dict_depth,
self.stream dict_old depth,
self.stream dict half length,
self.stream dict_old half length,
self.stream dict_surfko,
self.stream dict surfk9o0,
self.stream dict coa,
self.stream dict_leakrate,
base)

Now that the stream/file objects are created and are passed to the TimeLoopService module for
each execution of a realization, the next step is to edit the TimeLoop module and ensure that
the crack length and depth values are captured into arrays. The
src/service/timeloop/TimeLoop V2.1 _MOD.f90 source code is edited as follows. First, new
parameters were defined (olddepth and oldhalf) to pass the crack length and depth values
before modification by the crackenhancer module. Arrays of dimension 720 x 19 are created to
hold the parameter values for each timestep and crack id, respectively. Values for the crack
length and depth are captured during looping over cracks and timesteps in the parameter
olddepth and oldhalf. These values are then written into the appropriate elements in the
crack_old_depth and crack_old_half_length and ultimately passed to the appropriate elements
in the arrays crack_old_depth_log and crack old_half length_log, which are populated with the
values for all timesteps and cracks. The values contained for these arrays are exposed to the
python TimeLoopServiceModule.

< Here, a number of lines of code are omitted. >

! Adding variables for zcracklengthenhance and
! zcracksizeenhance

real

(8) :: zcracklengthenhance
real (8) :: zcracksizeenhance
real (8) :: olddepth
real (8) :: oldhalf

! adding a debugging filename (this should be commented out, just for
! testing verifying
CHARACTER (len=32) :: filename

< Here, a number of lines of code are omitted. >

(0:720,19) :: crack ctype log o[-
real (8) ,dimension(0:720,19) :: crack_depth log ! [m]
real (8) ,dimension(0:720,19) :: crack old depth log ! [m]
real (8) ,dimension(0:720,19) :: crack half length log ! [m]
real (8) ,dimension(0:720,19) :: crack old half length log ! [m]
real (8) ,dimension(0:720,19) :: crack_surfkO_log ! [MPa-m**0.5]
real (8) ,dimension(0:720,19) :: crack_surfk90_log ! [MPa-m**0.5]
real (8) ,dimension(0:720,19) :: crack_average coa_log I [m**2]
real (8) ,dimension(0:720,19) : crack leakrate log I [m**3/sec]

C-35

real (8) ,dimension(0:720,19) :: crack pond log
real (8) ,dimension(0:720,19) :: crack_frac_area_ log

< Here, a number of lines of code are omitted. >

real (8) ,dimension (30) crack_depth !
real (8) ,dimension (30) crack_old depth

real (8) ,dimension (30) crack_half length !
real (8) ,dimension (30) crack old half length !
real (8) ,dimension (30) crack_initiationtime

real (8) ,dimension (30) crack_leakrate

real (8) ,dimension(30) :: crack_coa

real (8) ,dimension(30) :: crack coa 1

real (8) ,dimension(30) :: crack _coa 3

real (8) ,dimension (30) crack_location

real (8) ,dimension (30) crack_timeoffailure !
real (8) ,dimension(30) crack timeoffailure sse

real (8) ,dimension (30) crack timeofdetection

real (8) ,dimension (30) crack_timeofleakdetection !
real (8) ,dimension (30) crack_blwh

< Here, a number of lines of code are omitted. >
< Now, in subroutine run() >

isFirstLeak = .TRUE.
isRupture_ SSE = .TRUE.
isFirstInitiation = .TRUE.
isCOA_1 = .TRUE.
isCOA_3 = .TRUE.
crack_ctype log =0
crack_depth log = zero
crack_old depth log = zero !
crack_half length log = Zero
crack_old half length log = zero !
crack_leakrate_ log = zero
crack_surfk0_log = zero
crack_average_coa_log = zero
crack_pond log = zero
crack_surfk90_log = zero
total_leakrate_log = zero
first_leak log = zero
coa_1 log = zero
coa_3_log = zero
rupture_log = zero
rupture_sse_log = zero
first_initiation_log = zero

< Here, a number of lines of code are omitted. >

of program
of program
of program

pi = 4.0d0*atan (one) ! pi to machine precision

average cod = zero ! crack-opening-displacement total
current_time = zero !

previous_time = -time_step !

!

tref = grower tref !pwscc parameter egn 13

goverr = grower_goverr !pwscc parameter egn 13

alpha = grower_alpha !pwscc parameter egn 13

beta = grower_beta !pwscc parameter egn 13

C-36

of program

plan
plan
plan
plan

S 8B L

kth = grower_ kth Ilpwscc parameter eqgn 13 of program plan [MPa (m) **0.5]
!
temp = temperature !temperature [C]
tinterval = time_ step ltime interval [yr]
thickness = pipe _wall thickness Ipipe wall thickness [m]
rinner = 0.5d0*pipe_inner diameter !inner pipe radius [m]
router = 0.5d0*pipe_outer diameter !outer pipe radius [m]
rmean = 0.5d0* (rinner+router) Imean radius [m]
rovert = rinner/thickness linner radius normalized by the wall thickness [-]
sigflow = 0.5d0* (weld_yieldstrength+weld ultimatestrength) ! material flow stress[MPal]
axialload = dw_fx + te_fx + ts_fx ! total axial load without pressure [kN]
next inspection = inspection Interval ! initialize inspection time
crack_isdetected = .false.
crack_isleakdetected = .false.
crack_timeoffailure = 61.0d0
crack timeoffailure sse = 61.0d0
crack timeofdetection = zero
crack_timeofleakdetection = zero
crack_depth = Zero ! [m]
crack old depth = zero ! [m]
crack _half length = zero ! [m]
crack _old half length = zero ! [m]
crack_leakrate = zero I [m**3/s]
crack_coa = zero I [m**2]
crack_coa_1 = zero ! [m**2] coa=1 inch equivalent break diameter
crack_coa_3 = zero ! [m**2] coa=3 inch equivalent break diameter
< Here, a number of lines of code are omitted. >
! __
! MOD Adding interface to crackenhancer module
! load current values into crackenhancer input vector
in_crackenhancer (1) = zcracklengthenhance
in_crackenhancer (2) = zcracksizeenhance
in crackenhancer(3) = a ! crack depth [m]
in_crackenhancer (4) = c¢ ! crack half-length after grower
olddepth = a ! the initial value before modification
oldhalf = ¢ ! the initial value before modification
crack old_depth (icrack) = a ! track old crack depth [m]
crack old half length(icrack) = ¢ ! track old crack half length [m]
write (101, '('' Crack Initiated = '',112)') icrack
write(101,'('' a before = '',ES12.5)"') a
write (101, ' ('' c begore = '',ES12.5)') ¢
if (crack _ctype(icrack) .EQ. -1) then

call crackenhancer(in_crackenhancer,

endif

! update a and c values
a = out_crackenhancer (1)
c = out_crackenhancer (2)
write(101,'('' a after
write (101,'('' ¢ after

< Here, a number of lines of code are omitted. >

! load in logging data

if (icrack .LE. 19) then
if (itime .EQ. 0) then
crack_depth log(itime,icrack)

crack old _depth log(itime,icrack)
crack_half length log(itime,icrack)

crack old _half length log(itime,icrack

out_crackenhancer)

'',ES12.5)")

a
'",ES12.5)"') c

= crack depth(icrack) ! current
crack depth [m]

crack old depth (icrack)
= crack half length(icrack) ! current

crack half length [m]

crack old half length(itime, icrack)

C-37

crack _ctype log(itime,icrack)
crack_surfk90_log(itime, icrack)
crack _surfk0_log(itime, icrack)
crack frac area log(itime,icrack)

crack_ctype (icrack)
max (surfk90,0.0d0)
max (surfk0, 0.0d0)
frac_area

else
crack_depth log(itime-1,icrack) = crack depth (icrack) ! current
lcrack depth [m]
crack _half length log(itime-1,icrack) = crack half length(icrack) ! current

! crack half length [m]
crack_ctype (icrack)
max (surfk90,0.0d0)
max (surfk0, 0.0d0)
frac_area

crack_ctype log(itime-1,icrack)

crack surfk90_log(itime-1,icrack)

crack surfk0 log(itime-1,icrack)

crack frac area log(itime-1,icrack)
endif

if (¢ .ge. 0.4975d0*pi*pipe inner diameter) then

crack_timeoffailure (icrack) = previous_time
|

! complete log entries for remaining timesteps
if (itime .EQ. 0) then
crack ctype log(itime:720,1:19)
crack depth log(itime:720,icrack)
crack old depth log(itime:720, icrack)
crack_old depth (icrack)
crack half length log(itime:720,icrack) = crack_half length(icrack)
crack old _half length log(itime:720,icrack) =
crack old half length (icrack)
crack_surfk90_log(itime:720,icrack) max (surfk90,0.0d0)
crack_surfk0_log(itime:720,icrack) max (surfk0,0.0d0)
crack_frac_area log(itime:720,icrack) frac_area

200
crack_depth (icrack)

rupture log(itime:720) one
else
crack_ctype_ log(itime-1:720,1:19) 200

crack depth log(itime-1:720,icrack)
crack old_depth log(itime-1:720,icrack)
crack old depth (icrack)

crack_half length log(itime-1:720,icrack) = crack_half length(icrack)
crack old half length log(itime-1:720,icrack) =

crack old half length (icrack)
crack _surfk90 log(itime-1:720, icrack) max (surfk90, 0.0d0)
crack_surfk0_log(itime-1:720,icrack) ax (surfk0,0.0d0)

crack_depth (icrack)

At this point, the timeloop wrapper and timeloop PYD had to be recompiled. This was done
using the same method previously described.

The crack_old_depth_log and crack _old_half_length_log arrays should be exposed to the
TimeLoopService module. The next step is to modify the
src/service/TimeLoopServiceModule.py and write the array values to the appropriate stream
objects (export the data). To do this, the following edits were made to the
src/service/TimeLoopServiceModule.py file. First, the class docs were updated to reflect the
input of the stream/file objects, which are passed from the RealizationsControllerModule. Next,
after the TimeLoop module has been called, the remainder of the TimeLoopServiceModule code
passes through several loops, which facilitate writing of logging data and writing to the
post-processing files. An important point to note here is that the operator “<<” is used in this
section of the code behaves differently for the Qt stream objects than for python. Here, the “<<”
adds the text characters to the Qt text stream (in turn appending the line of text to the open file).

C-38

class TimeLoopService (object) :
T

classdocs

[

@staticmethod

def executeTimeLoop(current trial,
stream dict,

stream dict pnd,

stream dict_ ctype,
stream dict_other,
stream_dict_depth,

debug, deterministic,

stream dict old depth,
stream dict half length,
stream dict old half length,

stream dict_surfko,
stream dict_ surfk9o0,
stream dict coa,

stream dict leakrate,

caseName

[

)

Execute the TimeLoop for each realization
write output to file and store in output datastore out.tar.gz

[

< Here, a number of lines of code are omitted. >

for icrack in xrange(3):
icrk

depth_fname
old_depth fname

half length fname
old half length fname
surfk0_fname
surfk90_fname
coa_fname
leakrate_fname

(stream_depth, fh depth,
fh half length, fname half length)
stream dict _half length[half length fname]

(stream _half length,

(stream old _depth, fh old depth,
stream dict_old depth[old depth fname]

(stream old half length,
stream dict old half length[old half length fname]
fname_surfk0) = stream dict_surfkO[surfk0_ fname]

(stream_surfko,
(stream surfk90,

(stream _coa, fh coa,

(stream_leakrate, fh leakrate,

fname depth) = stream dict_depth[depth

fh_old half length,

= "%03d" % (icrack+l)

= "depth "
"old_depth "

= "half length " + icrk + "

= "old half length " + icrk + "

= "surfko_"

= "surfko0_"
= "coa "

= "leakrate "

fname old depth)

+ icrk + ".txt"
+ icrk + ".txt"
LExtn

.txt"

+ icrk + ".txt"
+ icrk + ".txt"
+ icrk + ".txt"
+ icrk + ".txt"
fname]

fname old half length) =

stream dict surfk90 [surfk90 fname]

fh_surfko,
fh surfk9o, fname_surfk90) =
fname coa)= stream_dict coa[coa_fname]

for itime in xrange (num time_ steps) :
stream depth << timeloop.crack depth logl[itime,icrack] << tab

stream_ surfk0
stream_surfk90
stream coa
stream_leakrate

stream half length << timeloop.crack half length logl[itime,icrack] <<

stream old depth << timeloop.crack old depth logl[itime,icrack] << tab

stream old_half length << timeloop.crack old half length logl[itime, icrack]
timeloop.crack surfk0 log[itime,icrack] <<
timeloop.crack surfk90 loglitime, icrack] <<
timeloop.crack_average coa_ loglitime, icrack] <<
timeloop.crack leakrate loglitime,icrack] <<

stream_depth <<
stream _half length <<
stream_old depth <<

<<
<<
<<
<<

nl
nl
nl

stream old half length <<

stream_surfk0 <<
stream_surfk90 <<
stream_coa <<
stream leakrate <<

nl
nl
nl
nl

nl

C-39

tab

tab
tab
tab
tab

fname_leakrate) = stream dict_ leakrate[leakrate_ fname]

<< tab

Before, the post-processing option can be requested from the XLPR-SIAM GUI, an additional
linkage must be created to ensure that the proper input is sent to the TRANSFORMERS and
EXPECTATION programs (i.e., see the following screenshot):

| Problem Setup | Material Properties | Crack Initiation and Growth | Operating, Loading, and Mitigation | In-Service Inspection {ISI) | Post-Processing Options

Execution |_

Realizations

Output Files

View

Post Processing

Post-processing Files

View

Visualize Results

Creating file: Casel_variables_list. txt
Creating file: options. txt

Creating file: EXP_options. txt
Creating file: Casel_times. txt
Creating file: Casel_inspection.txt
Creating file: Casel_guantiles.txt

Executing transformers . . .
This could take several minutes.
Reading options. txt
Reading parameter of interest files,
Reading file: Casel_pnd_001.txt
Writing file: Casel_pnd_001 COR.TXT
Reading file: Casel_pnd_002. txt
Writing file: Case1_pnd_002_COR.TXT
Reading file: Casel_pnd_003.txt
Writing file: Case1_pnd_003_COR.TXT
Reading file: Casel_pnd_004. txt
Writing file: Casel_pnd_004_COR.TXT
Reading file: Casel_pnd_005. txt
Writing file: Casel_pnd_005_COR.TXT
Reading file: Casel_pnd_006. txt
Writing file: Casel_pnd_006_COR.TXT
Reading file: Casel_pnd_007.txt
Writing file: Casel_pnd_007_COR.TXT
Reading file: Casel_pnd_008. txt
Writing file: Case1_pnd_008_COR.TXT
Reading file: Casel_pnd_009. txt
Writing file: Casel_pnd_009_COR.TXT
Reading file: Casel_pnd_010.txt
Writing file: Casei_pnd_010_COR.TXT
Reading file: Casel_pnd_011.txt
Writing file: Casel_pnd_011 COR.TXT
T

1"h SIAM_XLPR Execute Post-Process Utility ES

Post-processing successfully completed.
exitCode = 0 exitStatus = 0

Close

SI Units Casel.dbm

Browse

] ’ View Distribution] Case Database:

When the post-processing button is selected, the createPostProcessing method of
Jsrc/view/customviews is called. The XLPR-SIAM GUI allows for user input of parameters for
TRANSFORMERS and EXPECTATION, which are used to automatically generate the required
input files for these programs. In adding this feature, the authors removed the direct user
interface with the input text files for these programs and have recompiled TRANSFORMERS
and EXPECTATION programs into one executable file. Because of this modification, the
additional variables must be added to the source code for the createPostProcessing method of
Jsrclview/customviews.py. This was done, and the source code edits follow.

< Here, a number of lines of code are omitted. >

def createPostProcessing(self) :

self.save ()

(stream options,

(stream _exp options,

baseName

fh_options)

inspection times

fh exp options) =

Tools.createWriteOnlyTextFile('options.txt',
where=self .postPath)
Tools.createWriteOnlyTextFile (
'EXP_options.txt', where=self.postPath)
unicode (QFileInfo(self.filename) .baseName ())

create the "variables_list.txt" file

C—40

< Here, a number of lines of code are omitted. >

stream var list << " old depth 001.txt" << nl
stream var list << " old depth 002.txt" << nl
stream var_ list << " old depth 003.txt" << nl

stream var list << " old half length 001.txt" << nl
stream var list << " old half length 002.txt" << nl
stream var_ list << " old half length 003.txt" << nl

References

GoldSim Technology Group LLC. “GoldSim User’'s Guide.” Vols 1 and 2. Version 10.11.
Issaquah, Washington: GoldSim Technology Group LLC. 2011.

Klasky, H.B., P.T. Williams, S. Yin, and B.R. Bass. “SIAM-xLPR Version 1.0 Framework
Report.” ORNL/NRC/LTR-248. Oak Ridge, Tennessee: Oak Ridge National
Laboratory. 2010a.

Klasky, H.B., P.T. Williams, B.R. Bass, and S. Yin. “Structural Integrity Assessments
Modular-Probabilistic Fracture Mechanics (SIAM-PFM): User’s Guide for xLPR.”
ORNL/NRC/LTR-247. Oak Ridge, Tennessee: Oak Ridge National Laboratory. 2010b.

Summerfield, M. “Rapid GUI Programming With Python and QT.” ISBN-10: 0132354187.
Upper Saddle River, New Jersey: Prentice Hall. 2007.

C-41

	Assessment of Capabilities of Extremely Low Probability of Rupture FINAL RPT
	Appendix A SW QA
	Appendix B xLPR_VV
	Appendix C Implementation of a Dummy Module in GSxLPR and SIAMxLPR

